mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-21 10:55:13 +00:00
Add iterative RALPH-loop (Read, Act, Log, Persist, Halt) pattern implementations for all four supported languages: - C#/.NET: ralph-loop.cs with documentation - Node.js/TypeScript: ralph-loop.ts with documentation - Python: ralph_loop.py with documentation (async API) - Go: ralph-loop.go with documentation Each recipe demonstrates: - Self-referential iteration where AI reviews its own output - Completion promise detection to halt the loop - Max iteration safety limits - File persistence between iterations Verified against real Copilot SDK APIs: - Python: fully verified end-to-end with github-copilot-sdk - Node.js: fully verified end-to-end with @github/copilot-sdk - C#: compiles and runs successfully with GitHub.Copilot.SDK - Go: compiles against github.com/github/copilot-sdk/go v0.1.23
239 lines
7.8 KiB
Markdown
239 lines
7.8 KiB
Markdown
# RALPH-loop: Iterative Self-Referential AI Loops
|
|
|
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
|
|
|
> **Runnable example:** [recipe/ralph-loop.cs](recipe/ralph-loop.cs)
|
|
>
|
|
> ```bash
|
|
> cd dotnet/recipe
|
|
> dotnet run ralph-loop.cs
|
|
> ```
|
|
|
|
## What is RALPH-loop?
|
|
|
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
|
|
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
|
|
|
## Example Scenario
|
|
|
|
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
|
|
|
|
1. Send the initial prompt with clear success criteria
|
|
2. Claude writes code and tests
|
|
3. Claude runs tests and sees failures
|
|
4. Loop automatically re-sends the prompt
|
|
5. Claude reads test output and previous code, fixes issues
|
|
6. Repeat until all tests pass and completion promise is output
|
|
|
|
## Basic Implementation
|
|
|
|
```csharp
|
|
using GitHub.Copilot.SDK;
|
|
|
|
public class RalphLoop
|
|
{
|
|
private readonly CopilotClient _client;
|
|
private int _iteration = 0;
|
|
private readonly int _maxIterations;
|
|
private readonly string _completionPromise;
|
|
private string? _lastResponse;
|
|
|
|
public RalphLoop(int maxIterations = 10, string completionPromise = "COMPLETE")
|
|
{
|
|
_client = new CopilotClient();
|
|
_maxIterations = maxIterations;
|
|
_completionPromise = completionPromise;
|
|
}
|
|
|
|
public async Task<string> RunAsync(string prompt)
|
|
{
|
|
await _client.StartAsync();
|
|
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
|
|
|
|
try
|
|
{
|
|
while (_iteration < _maxIterations)
|
|
{
|
|
_iteration++;
|
|
Console.WriteLine($"\n--- Iteration {_iteration} ---");
|
|
|
|
var done = new TaskCompletionSource<string>();
|
|
session.On(evt =>
|
|
{
|
|
if (evt is AssistantMessageEvent msg)
|
|
{
|
|
_lastResponse = msg.Data.Content;
|
|
done.SetResult(msg.Data.Content);
|
|
}
|
|
});
|
|
|
|
// Send prompt (on first iteration) or continuation
|
|
var messagePrompt = _iteration == 1
|
|
? prompt
|
|
: $"{prompt}\n\nPrevious attempt:\n{_lastResponse}\n\nContinue iterating...";
|
|
|
|
await session.SendAsync(new MessageOptions { Prompt = messagePrompt });
|
|
var response = await done.Task;
|
|
|
|
// Check for completion promise
|
|
if (response.Contains(_completionPromise))
|
|
{
|
|
Console.WriteLine($"✓ Completion promise detected: {_completionPromise}");
|
|
return response;
|
|
}
|
|
|
|
Console.WriteLine($"Iteration {_iteration} complete. Continuing...");
|
|
}
|
|
|
|
throw new InvalidOperationException(
|
|
$"Max iterations ({_maxIterations}) reached without completion promise");
|
|
}
|
|
finally
|
|
{
|
|
await session.DisposeAsync();
|
|
await _client.StopAsync();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Usage
|
|
var loop = new RalphLoop(maxIterations: 5, completionPromise: "DONE");
|
|
var result = await loop.RunAsync("Your task here");
|
|
Console.WriteLine(result);
|
|
```
|
|
|
|
## With File Persistence
|
|
|
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
|
|
|
```csharp
|
|
public class PersistentRalphLoop
|
|
{
|
|
private readonly string _workDir;
|
|
private readonly CopilotClient _client;
|
|
private int _iteration = 0;
|
|
|
|
public PersistentRalphLoop(string workDir, int maxIterations = 10)
|
|
{
|
|
_workDir = workDir;
|
|
Directory.CreateDirectory(_workDir);
|
|
_client = new CopilotClient();
|
|
}
|
|
|
|
public async Task<string> RunAsync(string prompt)
|
|
{
|
|
await _client.StartAsync();
|
|
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
|
|
|
|
try
|
|
{
|
|
// Store initial prompt
|
|
var promptFile = Path.Combine(_workDir, "prompt.md");
|
|
await File.WriteAllTextAsync(promptFile, prompt);
|
|
|
|
while (_iteration < 10)
|
|
{
|
|
_iteration++;
|
|
Console.WriteLine($"\n--- Iteration {_iteration} ---");
|
|
|
|
// Build context including previous work
|
|
var contextBuilder = new StringBuilder(prompt);
|
|
var previousOutput = Path.Combine(_workDir, $"output-{_iteration - 1}.txt");
|
|
if (File.Exists(previousOutput))
|
|
{
|
|
contextBuilder.AppendLine($"\nPrevious iteration output:\n{await File.ReadAllTextAsync(previousOutput)}");
|
|
}
|
|
|
|
var done = new TaskCompletionSource<string>();
|
|
string response = "";
|
|
session.On(evt =>
|
|
{
|
|
if (evt is AssistantMessageEvent msg)
|
|
{
|
|
response = msg.Data.Content;
|
|
done.SetResult(msg.Data.Content);
|
|
}
|
|
});
|
|
|
|
await session.SendAsync(new MessageOptions { Prompt = contextBuilder.ToString() });
|
|
await done.Task;
|
|
|
|
// Persist output
|
|
await File.WriteAllTextAsync(
|
|
Path.Combine(_workDir, $"output-{_iteration}.txt"),
|
|
response);
|
|
|
|
if (response.Contains("COMPLETE"))
|
|
{
|
|
return response;
|
|
}
|
|
}
|
|
|
|
throw new InvalidOperationException("Max iterations reached");
|
|
}
|
|
finally
|
|
{
|
|
await session.DisposeAsync();
|
|
await _client.StopAsync();
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
|
5. **Include context**: Feed previous iteration output back as context
|
|
6. **Monitor progress**: Log each iteration to track what's happening
|
|
|
|
## Example: Iterative Code Generation
|
|
|
|
```csharp
|
|
var prompt = @"Write a function that:
|
|
1. Parses CSV data
|
|
2. Validates required fields
|
|
3. Returns parsed records or error
|
|
4. Has unit tests
|
|
5. Output <promise>COMPLETE</promise> when done";
|
|
|
|
var loop = new RalphLoop(maxIterations: 10, completionPromise: "COMPLETE");
|
|
var result = await loop.RunAsync(prompt);
|
|
```
|
|
|
|
## Handling Failures
|
|
|
|
```csharp
|
|
try
|
|
{
|
|
var result = await loop.RunAsync(prompt);
|
|
Console.WriteLine("Task completed successfully!");
|
|
}
|
|
catch (InvalidOperationException ex) when (ex.Message.Contains("Max iterations"))
|
|
{
|
|
Console.WriteLine("Task did not complete within iteration limit.");
|
|
Console.WriteLine($"Last response: {loop.LastResponse}");
|
|
// Document what was attempted and suggest alternatives
|
|
}
|
|
```
|
|
|
|
## When to Use RALPH-loop
|
|
|
|
**Good for:**
|
|
- Code generation with automatic verification (tests, linters)
|
|
- Tasks with clear success criteria
|
|
- Iterative refinement where each attempt learns from previous failures
|
|
- Unattended long-running improvements
|
|
|
|
**Not good for:**
|
|
- Tasks requiring human judgment or design input
|
|
- One-shot operations
|
|
- Tasks with vague success criteria
|
|
- Real-time interactive debugging
|