mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-22 11:25:13 +00:00
241 lines
6.2 KiB
Markdown
241 lines
6.2 KiB
Markdown
# RALPH-loop: Iterative Self-Referential AI Loops
|
|
|
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
|
|
|
> **Runnable example:** [recipe/ralph-loop.go](recipe/ralph-loop.go)
|
|
>
|
|
> ```bash
|
|
> cd go
|
|
> go run recipe/ralph-loop.go
|
|
> ```
|
|
|
|
## What is RALPH-loop?
|
|
|
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
|
|
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
|
|
|
## Example Scenario
|
|
|
|
You need to iteratively improve code until all tests pass. Instead of asking Copilot to "write perfect code," you use RALPH-loop to:
|
|
|
|
1. Send the initial prompt with clear success criteria
|
|
2. Copilot writes code and tests
|
|
3. Copilot runs tests and sees failures
|
|
4. Loop automatically re-sends the prompt
|
|
5. Copilot reads test output and previous code, fixes issues
|
|
6. Repeat until all tests pass and completion promise is output
|
|
|
|
## Basic Implementation
|
|
|
|
```go
|
|
package main
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"log"
|
|
"strings"
|
|
|
|
copilot "github.com/github/copilot-sdk/go"
|
|
)
|
|
|
|
type RalphLoop struct {
|
|
client *copilot.Client
|
|
iteration int
|
|
maxIterations int
|
|
completionPromise string
|
|
LastResponse string
|
|
}
|
|
|
|
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
|
|
return &RalphLoop{
|
|
client: copilot.NewClient(nil),
|
|
maxIterations: maxIterations,
|
|
completionPromise: completionPromise,
|
|
}
|
|
}
|
|
|
|
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
|
|
if err := r.client.Start(ctx); err != nil {
|
|
return "", err
|
|
}
|
|
defer r.client.Stop()
|
|
|
|
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
|
|
Model: "gpt-5.1-codex-mini",
|
|
})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
defer session.Destroy()
|
|
|
|
for r.iteration < r.maxIterations {
|
|
r.iteration++
|
|
fmt.Printf("\n--- Iteration %d/%d ---\n", r.iteration, r.maxIterations)
|
|
|
|
prompt := r.buildIterationPrompt(initialPrompt)
|
|
|
|
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
if result != nil && result.Data.Content != nil {
|
|
r.LastResponse = *result.Data.Content
|
|
}
|
|
|
|
if strings.Contains(r.LastResponse, r.completionPromise) {
|
|
fmt.Printf("✓ Completion promise detected: %s\n", r.completionPromise)
|
|
return r.LastResponse, nil
|
|
}
|
|
}
|
|
|
|
return "", fmt.Errorf("max iterations (%d) reached without completion promise",
|
|
r.maxIterations)
|
|
}
|
|
|
|
// Usage
|
|
func main() {
|
|
ctx := context.Background()
|
|
loop := NewRalphLoop(5, "COMPLETE")
|
|
result, err := loop.Run(ctx, "Your task here")
|
|
if err != nil {
|
|
log.Fatal(err)
|
|
}
|
|
fmt.Println(result)
|
|
}
|
|
```
|
|
|
|
## With File Persistence
|
|
|
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
|
|
|
```go
|
|
package main
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"os"
|
|
"path/filepath"
|
|
"strings"
|
|
|
|
copilot "github.com/github/copilot-sdk/go"
|
|
)
|
|
|
|
type PersistentRalphLoop struct {
|
|
client *copilot.Client
|
|
workDir string
|
|
iteration int
|
|
maxIterations int
|
|
}
|
|
|
|
func NewPersistentRalphLoop(workDir string, maxIterations int) *PersistentRalphLoop {
|
|
os.MkdirAll(workDir, 0755)
|
|
return &PersistentRalphLoop{
|
|
client: copilot.NewClient(nil),
|
|
workDir: workDir,
|
|
maxIterations: maxIterations,
|
|
}
|
|
}
|
|
|
|
func (p *PersistentRalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
|
|
if err := p.client.Start(ctx); err != nil {
|
|
return "", err
|
|
}
|
|
defer p.client.Stop()
|
|
|
|
os.WriteFile(filepath.Join(p.workDir, "prompt.md"), []byte(initialPrompt), 0644)
|
|
|
|
session, err := p.client.CreateSession(ctx, &copilot.SessionConfig{
|
|
Model: "gpt-5.1-codex-mini",
|
|
})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
defer session.Destroy()
|
|
|
|
for p.iteration < p.maxIterations {
|
|
p.iteration++
|
|
|
|
prompt := initialPrompt
|
|
prevFile := filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration-1))
|
|
if data, err := os.ReadFile(prevFile); err == nil {
|
|
prompt = fmt.Sprintf("%s\n\nPrevious iteration:\n%s", initialPrompt, string(data))
|
|
}
|
|
|
|
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
response := ""
|
|
if result != nil && result.Data.Content != nil {
|
|
response = *result.Data.Content
|
|
}
|
|
|
|
os.WriteFile(filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration)),
|
|
[]byte(response), 0644)
|
|
|
|
if strings.Contains(response, "COMPLETE") {
|
|
return response, nil
|
|
}
|
|
}
|
|
|
|
return "", fmt.Errorf("max iterations reached")
|
|
}
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
|
5. **Include context**: Feed previous iteration output back as context
|
|
6. **Monitor progress**: Log each iteration to track what's happening
|
|
|
|
## Example: Iterative Code Generation
|
|
|
|
```go
|
|
prompt := `Write a function that:
|
|
1. Parses CSV data
|
|
2. Validates required fields
|
|
3. Returns parsed records or error
|
|
4. Has unit tests
|
|
5. Output <promise>COMPLETE</promise> when done`
|
|
|
|
loop := NewRalphLoop(10, "COMPLETE")
|
|
result, err := loop.Run(context.Background(), prompt)
|
|
```
|
|
|
|
## Handling Failures
|
|
|
|
```go
|
|
ctx := context.Background()
|
|
loop := NewRalphLoop(5, "COMPLETE")
|
|
result, err := loop.Run(ctx, prompt)
|
|
if err != nil {
|
|
log.Printf("Task failed: %v", err)
|
|
log.Printf("Last attempt: %s", loop.LastResponse)
|
|
}
|
|
```
|
|
|
|
## When to Use RALPH-loop
|
|
|
|
**Good for:**
|
|
- Code generation with automatic verification (tests, linters)
|
|
- Tasks with clear success criteria
|
|
- Iterative refinement where each attempt learns from previous failures
|
|
- Unattended long-running improvements
|
|
|
|
**Not good for:**
|
|
- Tasks requiring human judgment or design input
|
|
- One-shot operations
|
|
- Tasks with vague success criteria
|
|
- Real-time interactive debugging
|