mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-20 02:15:12 +00:00
6.2 KiB
6.2 KiB
RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
Runnable example: recipe/ralph-loop.go
cd go go run recipe/ralph-loop.go
What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- One prompt, multiple iterations: The same prompt is processed repeatedly
- Self-referential feedback: The AI reads its own previous work (file changes, git history)
- Completion detection: Loop exits when a completion promise is detected in output
- Safety limits: Always include a maximum iteration count to prevent infinite loops
Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Copilot to "write perfect code," you use RALPH-loop to:
- Send the initial prompt with clear success criteria
- Copilot writes code and tests
- Copilot runs tests and sees failures
- Loop automatically re-sends the prompt
- Copilot reads test output and previous code, fixes issues
- Repeat until all tests pass and completion promise is output
Basic Implementation
package main
import (
"context"
"fmt"
"log"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
type RalphLoop struct {
client *copilot.Client
iteration int
maxIterations int
completionPromise string
LastResponse string
}
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
return &RalphLoop{
client: copilot.NewClient(nil),
maxIterations: maxIterations,
completionPromise: completionPromise,
}
}
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
if err := r.client.Start(ctx); err != nil {
return "", err
}
defer r.client.Stop()
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return "", err
}
defer session.Destroy()
for r.iteration < r.maxIterations {
r.iteration++
fmt.Printf("\n--- Iteration %d/%d ---\n", r.iteration, r.maxIterations)
prompt := r.buildIterationPrompt(initialPrompt)
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
if err != nil {
return "", err
}
if result != nil && result.Data.Content != nil {
r.LastResponse = *result.Data.Content
}
if strings.Contains(r.LastResponse, r.completionPromise) {
fmt.Printf("✓ Completion promise detected: %s\n", r.completionPromise)
return r.LastResponse, nil
}
}
return "", fmt.Errorf("max iterations (%d) reached without completion promise",
r.maxIterations)
}
// Usage
func main() {
ctx := context.Background()
loop := NewRalphLoop(5, "COMPLETE")
result, err := loop.Run(ctx, "Your task here")
if err != nil {
log.Fatal(err)
}
fmt.Println(result)
}
With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
package main
import (
"context"
"fmt"
"os"
"path/filepath"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
type PersistentRalphLoop struct {
client *copilot.Client
workDir string
iteration int
maxIterations int
}
func NewPersistentRalphLoop(workDir string, maxIterations int) *PersistentRalphLoop {
os.MkdirAll(workDir, 0755)
return &PersistentRalphLoop{
client: copilot.NewClient(nil),
workDir: workDir,
maxIterations: maxIterations,
}
}
func (p *PersistentRalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
if err := p.client.Start(ctx); err != nil {
return "", err
}
defer p.client.Stop()
os.WriteFile(filepath.Join(p.workDir, "prompt.md"), []byte(initialPrompt), 0644)
session, err := p.client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return "", err
}
defer session.Destroy()
for p.iteration < p.maxIterations {
p.iteration++
prompt := initialPrompt
prevFile := filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration-1))
if data, err := os.ReadFile(prevFile); err == nil {
prompt = fmt.Sprintf("%s\n\nPrevious iteration:\n%s", initialPrompt, string(data))
}
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
if err != nil {
return "", err
}
response := ""
if result != nil && result.Data.Content != nil {
response = *result.Data.Content
}
os.WriteFile(filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration)),
[]byte(response), 0644)
if strings.Contains(response, "COMPLETE") {
return response, nil
}
}
return "", fmt.Errorf("max iterations reached")
}
Best Practices
- Write clear completion criteria: Include exactly what "done" looks like
- Use output markers: Include
<promise>COMPLETE</promise>or similar in completion condition - Always set max iterations: Prevents infinite loops on impossible tasks
- Persist state: Save files so AI can see what changed between iterations
- Include context: Feed previous iteration output back as context
- Monitor progress: Log each iteration to track what's happening
Example: Iterative Code Generation
prompt := `Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done`
loop := NewRalphLoop(10, "COMPLETE")
result, err := loop.Run(context.Background(), prompt)
Handling Failures
ctx := context.Background()
loop := NewRalphLoop(5, "COMPLETE")
result, err := loop.Run(ctx, prompt)
if err != nil {
log.Printf("Task failed: %v", err)
log.Printf("Last attempt: %s", loop.LastResponse)
}
When to Use RALPH-loop
Good for:
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
Not good for:
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging