mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-20 02:15:12 +00:00
Add RALPH-loop recipe to Copilot SDK cookbook
Add iterative RALPH-loop (Read, Act, Log, Persist, Halt) pattern implementations for all four supported languages: - C#/.NET: ralph-loop.cs with documentation - Node.js/TypeScript: ralph-loop.ts with documentation - Python: ralph_loop.py with documentation (async API) - Go: ralph-loop.go with documentation Each recipe demonstrates: - Self-referential iteration where AI reviews its own output - Completion promise detection to halt the loop - Max iteration safety limits - File persistence between iterations Verified against real Copilot SDK APIs: - Python: fully verified end-to-end with github-copilot-sdk - Node.js: fully verified end-to-end with @github/copilot-sdk - C#: compiles and runs successfully with GitHub.Copilot.SDK - Go: compiles against github.com/github/copilot-sdk/go v0.1.23
This commit is contained in:
@@ -6,6 +6,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
|
|||||||
|
|
||||||
### .NET (C#)
|
### .NET (C#)
|
||||||
|
|
||||||
|
- [RALPH-loop](dotnet/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
|
||||||
- [Error Handling](dotnet/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
- [Error Handling](dotnet/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
||||||
- [Multiple Sessions](dotnet/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
- [Multiple Sessions](dotnet/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
||||||
- [Managing Local Files](dotnet/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
- [Managing Local Files](dotnet/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
||||||
@@ -14,6 +15,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
|
|||||||
|
|
||||||
### Node.js / TypeScript
|
### Node.js / TypeScript
|
||||||
|
|
||||||
|
- [RALPH-loop](nodejs/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
|
||||||
- [Error Handling](nodejs/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
- [Error Handling](nodejs/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
||||||
- [Multiple Sessions](nodejs/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
- [Multiple Sessions](nodejs/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
||||||
- [Managing Local Files](nodejs/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
- [Managing Local Files](nodejs/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
||||||
@@ -22,6 +24,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
|
|||||||
|
|
||||||
### Python
|
### Python
|
||||||
|
|
||||||
|
- [RALPH-loop](python/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
|
||||||
- [Error Handling](python/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
- [Error Handling](python/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
||||||
- [Multiple Sessions](python/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
- [Multiple Sessions](python/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
||||||
- [Managing Local Files](python/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
- [Managing Local Files](python/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
||||||
@@ -30,6 +33,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
|
|||||||
|
|
||||||
### Go
|
### Go
|
||||||
|
|
||||||
|
- [RALPH-loop](go/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
|
||||||
- [Error Handling](go/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
- [Error Handling](go/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
|
||||||
- [Multiple Sessions](go/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
- [Multiple Sessions](go/multiple-sessions.md): Manage multiple independent conversations simultaneously.
|
||||||
- [Managing Local Files](go/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
- [Managing Local Files](go/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
|
||||||
@@ -83,4 +87,4 @@ go run <filename>.go
|
|||||||
|
|
||||||
## Status
|
## Status
|
||||||
|
|
||||||
Cookbook structure is complete with 4 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples.
|
Cookbook structure is complete with 5 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples. The RALPH-loop recipe demonstrates iterative self-referential AI loops for autonomous task completion.
|
||||||
|
|||||||
238
cookbook/copilot-sdk/dotnet/ralph-loop.md
Normal file
238
cookbook/copilot-sdk/dotnet/ralph-loop.md
Normal file
@@ -0,0 +1,238 @@
|
|||||||
|
# RALPH-loop: Iterative Self-Referential AI Loops
|
||||||
|
|
||||||
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
||||||
|
|
||||||
|
> **Runnable example:** [recipe/ralph-loop.cs](recipe/ralph-loop.cs)
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> cd dotnet/recipe
|
||||||
|
> dotnet run ralph-loop.cs
|
||||||
|
> ```
|
||||||
|
|
||||||
|
## What is RALPH-loop?
|
||||||
|
|
||||||
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
||||||
|
|
||||||
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
||||||
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
||||||
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
||||||
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
||||||
|
|
||||||
|
## Example Scenario
|
||||||
|
|
||||||
|
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
|
||||||
|
|
||||||
|
1. Send the initial prompt with clear success criteria
|
||||||
|
2. Claude writes code and tests
|
||||||
|
3. Claude runs tests and sees failures
|
||||||
|
4. Loop automatically re-sends the prompt
|
||||||
|
5. Claude reads test output and previous code, fixes issues
|
||||||
|
6. Repeat until all tests pass and completion promise is output
|
||||||
|
|
||||||
|
## Basic Implementation
|
||||||
|
|
||||||
|
```csharp
|
||||||
|
using GitHub.Copilot.SDK;
|
||||||
|
|
||||||
|
public class RalphLoop
|
||||||
|
{
|
||||||
|
private readonly CopilotClient _client;
|
||||||
|
private int _iteration = 0;
|
||||||
|
private readonly int _maxIterations;
|
||||||
|
private readonly string _completionPromise;
|
||||||
|
private string? _lastResponse;
|
||||||
|
|
||||||
|
public RalphLoop(int maxIterations = 10, string completionPromise = "COMPLETE")
|
||||||
|
{
|
||||||
|
_client = new CopilotClient();
|
||||||
|
_maxIterations = maxIterations;
|
||||||
|
_completionPromise = completionPromise;
|
||||||
|
}
|
||||||
|
|
||||||
|
public async Task<string> RunAsync(string prompt)
|
||||||
|
{
|
||||||
|
await _client.StartAsync();
|
||||||
|
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
|
||||||
|
|
||||||
|
try
|
||||||
|
{
|
||||||
|
while (_iteration < _maxIterations)
|
||||||
|
{
|
||||||
|
_iteration++;
|
||||||
|
Console.WriteLine($"\n--- Iteration {_iteration} ---");
|
||||||
|
|
||||||
|
var done = new TaskCompletionSource<string>();
|
||||||
|
session.On(evt =>
|
||||||
|
{
|
||||||
|
if (evt is AssistantMessageEvent msg)
|
||||||
|
{
|
||||||
|
_lastResponse = msg.Data.Content;
|
||||||
|
done.SetResult(msg.Data.Content);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
// Send prompt (on first iteration) or continuation
|
||||||
|
var messagePrompt = _iteration == 1
|
||||||
|
? prompt
|
||||||
|
: $"{prompt}\n\nPrevious attempt:\n{_lastResponse}\n\nContinue iterating...";
|
||||||
|
|
||||||
|
await session.SendAsync(new MessageOptions { Prompt = messagePrompt });
|
||||||
|
var response = await done.Task;
|
||||||
|
|
||||||
|
// Check for completion promise
|
||||||
|
if (response.Contains(_completionPromise))
|
||||||
|
{
|
||||||
|
Console.WriteLine($"✓ Completion promise detected: {_completionPromise}");
|
||||||
|
return response;
|
||||||
|
}
|
||||||
|
|
||||||
|
Console.WriteLine($"Iteration {_iteration} complete. Continuing...");
|
||||||
|
}
|
||||||
|
|
||||||
|
throw new InvalidOperationException(
|
||||||
|
$"Max iterations ({_maxIterations}) reached without completion promise");
|
||||||
|
}
|
||||||
|
finally
|
||||||
|
{
|
||||||
|
await session.DisposeAsync();
|
||||||
|
await _client.StopAsync();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Usage
|
||||||
|
var loop = new RalphLoop(maxIterations: 5, completionPromise: "DONE");
|
||||||
|
var result = await loop.RunAsync("Your task here");
|
||||||
|
Console.WriteLine(result);
|
||||||
|
```
|
||||||
|
|
||||||
|
## With File Persistence
|
||||||
|
|
||||||
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
||||||
|
|
||||||
|
```csharp
|
||||||
|
public class PersistentRalphLoop
|
||||||
|
{
|
||||||
|
private readonly string _workDir;
|
||||||
|
private readonly CopilotClient _client;
|
||||||
|
private int _iteration = 0;
|
||||||
|
|
||||||
|
public PersistentRalphLoop(string workDir, int maxIterations = 10)
|
||||||
|
{
|
||||||
|
_workDir = workDir;
|
||||||
|
Directory.CreateDirectory(_workDir);
|
||||||
|
_client = new CopilotClient();
|
||||||
|
}
|
||||||
|
|
||||||
|
public async Task<string> RunAsync(string prompt)
|
||||||
|
{
|
||||||
|
await _client.StartAsync();
|
||||||
|
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
|
||||||
|
|
||||||
|
try
|
||||||
|
{
|
||||||
|
// Store initial prompt
|
||||||
|
var promptFile = Path.Combine(_workDir, "prompt.md");
|
||||||
|
await File.WriteAllTextAsync(promptFile, prompt);
|
||||||
|
|
||||||
|
while (_iteration < 10)
|
||||||
|
{
|
||||||
|
_iteration++;
|
||||||
|
Console.WriteLine($"\n--- Iteration {_iteration} ---");
|
||||||
|
|
||||||
|
// Build context including previous work
|
||||||
|
var contextBuilder = new StringBuilder(prompt);
|
||||||
|
var previousOutput = Path.Combine(_workDir, $"output-{_iteration - 1}.txt");
|
||||||
|
if (File.Exists(previousOutput))
|
||||||
|
{
|
||||||
|
contextBuilder.AppendLine($"\nPrevious iteration output:\n{await File.ReadAllTextAsync(previousOutput)}");
|
||||||
|
}
|
||||||
|
|
||||||
|
var done = new TaskCompletionSource<string>();
|
||||||
|
string response = "";
|
||||||
|
session.On(evt =>
|
||||||
|
{
|
||||||
|
if (evt is AssistantMessageEvent msg)
|
||||||
|
{
|
||||||
|
response = msg.Data.Content;
|
||||||
|
done.SetResult(msg.Data.Content);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
await session.SendAsync(new MessageOptions { Prompt = contextBuilder.ToString() });
|
||||||
|
await done.Task;
|
||||||
|
|
||||||
|
// Persist output
|
||||||
|
await File.WriteAllTextAsync(
|
||||||
|
Path.Combine(_workDir, $"output-{_iteration}.txt"),
|
||||||
|
response);
|
||||||
|
|
||||||
|
if (response.Contains("COMPLETE"))
|
||||||
|
{
|
||||||
|
return response;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
throw new InvalidOperationException("Max iterations reached");
|
||||||
|
}
|
||||||
|
finally
|
||||||
|
{
|
||||||
|
await session.DisposeAsync();
|
||||||
|
await _client.StopAsync();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
||||||
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
||||||
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
||||||
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
||||||
|
5. **Include context**: Feed previous iteration output back as context
|
||||||
|
6. **Monitor progress**: Log each iteration to track what's happening
|
||||||
|
|
||||||
|
## Example: Iterative Code Generation
|
||||||
|
|
||||||
|
```csharp
|
||||||
|
var prompt = @"Write a function that:
|
||||||
|
1. Parses CSV data
|
||||||
|
2. Validates required fields
|
||||||
|
3. Returns parsed records or error
|
||||||
|
4. Has unit tests
|
||||||
|
5. Output <promise>COMPLETE</promise> when done";
|
||||||
|
|
||||||
|
var loop = new RalphLoop(maxIterations: 10, completionPromise: "COMPLETE");
|
||||||
|
var result = await loop.RunAsync(prompt);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Handling Failures
|
||||||
|
|
||||||
|
```csharp
|
||||||
|
try
|
||||||
|
{
|
||||||
|
var result = await loop.RunAsync(prompt);
|
||||||
|
Console.WriteLine("Task completed successfully!");
|
||||||
|
}
|
||||||
|
catch (InvalidOperationException ex) when (ex.Message.Contains("Max iterations"))
|
||||||
|
{
|
||||||
|
Console.WriteLine("Task did not complete within iteration limit.");
|
||||||
|
Console.WriteLine($"Last response: {loop.LastResponse}");
|
||||||
|
// Document what was attempted and suggest alternatives
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use RALPH-loop
|
||||||
|
|
||||||
|
**Good for:**
|
||||||
|
- Code generation with automatic verification (tests, linters)
|
||||||
|
- Tasks with clear success criteria
|
||||||
|
- Iterative refinement where each attempt learns from previous failures
|
||||||
|
- Unattended long-running improvements
|
||||||
|
|
||||||
|
**Not good for:**
|
||||||
|
- Tasks requiring human judgment or design input
|
||||||
|
- One-shot operations
|
||||||
|
- Tasks with vague success criteria
|
||||||
|
- Real-time interactive debugging
|
||||||
132
cookbook/copilot-sdk/dotnet/recipe/ralph-loop.cs
Normal file
132
cookbook/copilot-sdk/dotnet/recipe/ralph-loop.cs
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
#:package GitHub.Copilot.SDK@*
|
||||||
|
#:property PublishAot=false
|
||||||
|
|
||||||
|
using GitHub.Copilot.SDK;
|
||||||
|
using System.Text;
|
||||||
|
|
||||||
|
// RALPH-loop: Iterative self-referential AI loops.
|
||||||
|
// The same prompt is sent repeatedly, with AI reading its own previous output.
|
||||||
|
// Loop continues until completion promise is detected in the response.
|
||||||
|
|
||||||
|
var prompt = @"You are iteratively building a small library. Follow these phases IN ORDER.
|
||||||
|
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
|
||||||
|
|
||||||
|
Phase 1: Design a DataValidator class that validates records against a schema.
|
||||||
|
- Schema defines field names, types (string, int, float, bool), and whether required.
|
||||||
|
- Return a list of validation errors per record.
|
||||||
|
- Show the class code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
|
||||||
|
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
|
||||||
|
an extra edge-case test. Show the final consolidated code with all fixes.
|
||||||
|
When this phase is fully done, output the exact text: COMPLETE";
|
||||||
|
|
||||||
|
var loop = new RalphLoop(maxIterations: 5, completionPromise: "COMPLETE");
|
||||||
|
|
||||||
|
try
|
||||||
|
{
|
||||||
|
var result = await loop.RunAsync(prompt);
|
||||||
|
Console.WriteLine("\n=== FINAL RESULT ===");
|
||||||
|
Console.WriteLine(result);
|
||||||
|
}
|
||||||
|
catch (InvalidOperationException ex)
|
||||||
|
{
|
||||||
|
Console.WriteLine($"\nTask did not complete: {ex.Message}");
|
||||||
|
if (loop.LastResponse != null)
|
||||||
|
{
|
||||||
|
Console.WriteLine($"\nLast attempt:\n{loop.LastResponse}");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// --- RalphLoop class definition ---
|
||||||
|
|
||||||
|
public class RalphLoop
|
||||||
|
{
|
||||||
|
private readonly CopilotClient _client;
|
||||||
|
private int _iteration = 0;
|
||||||
|
private readonly int _maxIterations;
|
||||||
|
private readonly string _completionPromise;
|
||||||
|
private string? _lastResponse;
|
||||||
|
|
||||||
|
public RalphLoop(int maxIterations = 10, string completionPromise = "COMPLETE")
|
||||||
|
{
|
||||||
|
_client = new CopilotClient();
|
||||||
|
_maxIterations = maxIterations;
|
||||||
|
_completionPromise = completionPromise;
|
||||||
|
}
|
||||||
|
|
||||||
|
public string? LastResponse => _lastResponse;
|
||||||
|
|
||||||
|
public async Task<string> RunAsync(string initialPrompt)
|
||||||
|
{
|
||||||
|
await _client.StartAsync();
|
||||||
|
var session = await _client.CreateSessionAsync(new SessionConfig
|
||||||
|
{
|
||||||
|
Model = "gpt-5.1-codex-mini"
|
||||||
|
});
|
||||||
|
|
||||||
|
try
|
||||||
|
{
|
||||||
|
while (_iteration < _maxIterations)
|
||||||
|
{
|
||||||
|
_iteration++;
|
||||||
|
Console.WriteLine($"\n=== Iteration {_iteration}/{_maxIterations} ===");
|
||||||
|
|
||||||
|
var done = new TaskCompletionSource<string>();
|
||||||
|
session.On(evt =>
|
||||||
|
{
|
||||||
|
if (evt is AssistantMessageEvent msg)
|
||||||
|
{
|
||||||
|
_lastResponse = msg.Data.Content;
|
||||||
|
done.SetResult(msg.Data.Content);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
var currentPrompt = BuildIterationPrompt(initialPrompt);
|
||||||
|
Console.WriteLine($"Sending prompt (length: {currentPrompt.Length})...");
|
||||||
|
|
||||||
|
await session.SendAsync(new MessageOptions { Prompt = currentPrompt });
|
||||||
|
var response = await done.Task;
|
||||||
|
|
||||||
|
var summary = response.Length > 200
|
||||||
|
? response.Substring(0, 200) + "..."
|
||||||
|
: response;
|
||||||
|
Console.WriteLine($"Response: {summary}");
|
||||||
|
|
||||||
|
if (response.Contains(_completionPromise))
|
||||||
|
{
|
||||||
|
Console.WriteLine($"\n✓ Completion promise detected: '{_completionPromise}'");
|
||||||
|
return response;
|
||||||
|
}
|
||||||
|
|
||||||
|
Console.WriteLine($"Iteration {_iteration} complete. Continuing...");
|
||||||
|
}
|
||||||
|
|
||||||
|
throw new InvalidOperationException(
|
||||||
|
$"Max iterations ({_maxIterations}) reached without completion promise: '{_completionPromise}'");
|
||||||
|
}
|
||||||
|
finally
|
||||||
|
{
|
||||||
|
await session.DisposeAsync();
|
||||||
|
await _client.StopAsync();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private string BuildIterationPrompt(string initialPrompt)
|
||||||
|
{
|
||||||
|
if (_iteration == 1)
|
||||||
|
return initialPrompt;
|
||||||
|
|
||||||
|
var sb = new StringBuilder();
|
||||||
|
sb.AppendLine(initialPrompt);
|
||||||
|
sb.AppendLine();
|
||||||
|
sb.AppendLine("=== CONTEXT FROM PREVIOUS ITERATION ===");
|
||||||
|
sb.AppendLine(_lastResponse);
|
||||||
|
sb.AppendLine("=== END CONTEXT ===");
|
||||||
|
sb.AppendLine();
|
||||||
|
sb.AppendLine("Continue working on this task. Review the previous attempt and improve upon it.");
|
||||||
|
return sb.ToString();
|
||||||
|
}
|
||||||
|
}
|
||||||
240
cookbook/copilot-sdk/go/ralph-loop.md
Normal file
240
cookbook/copilot-sdk/go/ralph-loop.md
Normal file
@@ -0,0 +1,240 @@
|
|||||||
|
# RALPH-loop: Iterative Self-Referential AI Loops
|
||||||
|
|
||||||
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
||||||
|
|
||||||
|
> **Runnable example:** [recipe/ralph-loop.go](recipe/ralph-loop.go)
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> cd go/recipe
|
||||||
|
> go run ralph-loop.go
|
||||||
|
> ```
|
||||||
|
|
||||||
|
## What is RALPH-loop?
|
||||||
|
|
||||||
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
||||||
|
|
||||||
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
||||||
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
||||||
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
||||||
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
||||||
|
|
||||||
|
## Example Scenario
|
||||||
|
|
||||||
|
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
|
||||||
|
|
||||||
|
1. Send the initial prompt with clear success criteria
|
||||||
|
2. Claude writes code and tests
|
||||||
|
3. Claude runs tests and sees failures
|
||||||
|
4. Loop automatically re-sends the prompt
|
||||||
|
5. Claude reads test output and previous code, fixes issues
|
||||||
|
6. Repeat until all tests pass and completion promise is output
|
||||||
|
|
||||||
|
## Basic Implementation
|
||||||
|
|
||||||
|
```go
|
||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
copilot "github.com/github/copilot-sdk/go"
|
||||||
|
)
|
||||||
|
|
||||||
|
type RalphLoop struct {
|
||||||
|
client *copilot.Client
|
||||||
|
iteration int
|
||||||
|
maxIterations int
|
||||||
|
completionPromise string
|
||||||
|
LastResponse string
|
||||||
|
}
|
||||||
|
|
||||||
|
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
|
||||||
|
return &RalphLoop{
|
||||||
|
client: copilot.NewClient(nil),
|
||||||
|
maxIterations: maxIterations,
|
||||||
|
completionPromise: completionPromise,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
|
||||||
|
if err := r.client.Start(ctx); err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer r.client.Stop()
|
||||||
|
|
||||||
|
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
|
||||||
|
Model: "gpt-5.1-codex-mini",
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer session.Destroy()
|
||||||
|
|
||||||
|
for r.iteration < r.maxIterations {
|
||||||
|
r.iteration++
|
||||||
|
fmt.Printf("\n--- Iteration %d/%d ---\n", r.iteration, r.maxIterations)
|
||||||
|
|
||||||
|
prompt := r.buildIterationPrompt(initialPrompt)
|
||||||
|
|
||||||
|
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
if result != nil && result.Data.Content != nil {
|
||||||
|
r.LastResponse = *result.Data.Content
|
||||||
|
}
|
||||||
|
|
||||||
|
if strings.Contains(r.LastResponse, r.completionPromise) {
|
||||||
|
fmt.Printf("✓ Completion promise detected: %s\n", r.completionPromise)
|
||||||
|
return r.LastResponse, nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return "", fmt.Errorf("max iterations (%d) reached without completion promise",
|
||||||
|
r.maxIterations)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Usage
|
||||||
|
func main() {
|
||||||
|
ctx := context.Background()
|
||||||
|
loop := NewRalphLoop(5, "COMPLETE")
|
||||||
|
result, err := loop.Run(ctx, "Your task here")
|
||||||
|
if err != nil {
|
||||||
|
log.Fatal(err)
|
||||||
|
}
|
||||||
|
fmt.Println(result)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## With File Persistence
|
||||||
|
|
||||||
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
||||||
|
|
||||||
|
```go
|
||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
copilot "github.com/github/copilot-sdk/go"
|
||||||
|
)
|
||||||
|
|
||||||
|
type PersistentRalphLoop struct {
|
||||||
|
client *copilot.Client
|
||||||
|
workDir string
|
||||||
|
iteration int
|
||||||
|
maxIterations int
|
||||||
|
}
|
||||||
|
|
||||||
|
func NewPersistentRalphLoop(workDir string, maxIterations int) *PersistentRalphLoop {
|
||||||
|
os.MkdirAll(workDir, 0755)
|
||||||
|
return &PersistentRalphLoop{
|
||||||
|
client: copilot.NewClient(nil),
|
||||||
|
workDir: workDir,
|
||||||
|
maxIterations: maxIterations,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *PersistentRalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
|
||||||
|
if err := p.client.Start(ctx); err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer p.client.Stop()
|
||||||
|
|
||||||
|
os.WriteFile(filepath.Join(p.workDir, "prompt.md"), []byte(initialPrompt), 0644)
|
||||||
|
|
||||||
|
session, err := p.client.CreateSession(ctx, &copilot.SessionConfig{
|
||||||
|
Model: "gpt-5.1-codex-mini",
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
defer session.Destroy()
|
||||||
|
|
||||||
|
for p.iteration < p.maxIterations {
|
||||||
|
p.iteration++
|
||||||
|
|
||||||
|
prompt := initialPrompt
|
||||||
|
prevFile := filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration-1))
|
||||||
|
if data, err := os.ReadFile(prevFile); err == nil {
|
||||||
|
prompt = fmt.Sprintf("%s\n\nPrevious iteration:\n%s", initialPrompt, string(data))
|
||||||
|
}
|
||||||
|
|
||||||
|
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
|
||||||
|
response := ""
|
||||||
|
if result != nil && result.Data.Content != nil {
|
||||||
|
response = *result.Data.Content
|
||||||
|
}
|
||||||
|
|
||||||
|
os.WriteFile(filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration)),
|
||||||
|
[]byte(response), 0644)
|
||||||
|
|
||||||
|
if strings.Contains(response, "COMPLETE") {
|
||||||
|
return response, nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return "", fmt.Errorf("max iterations reached")
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
||||||
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
||||||
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
||||||
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
||||||
|
5. **Include context**: Feed previous iteration output back as context
|
||||||
|
6. **Monitor progress**: Log each iteration to track what's happening
|
||||||
|
|
||||||
|
## Example: Iterative Code Generation
|
||||||
|
|
||||||
|
```go
|
||||||
|
prompt := `Write a function that:
|
||||||
|
1. Parses CSV data
|
||||||
|
2. Validates required fields
|
||||||
|
3. Returns parsed records or error
|
||||||
|
4. Has unit tests
|
||||||
|
5. Output <promise>COMPLETE</promise> when done`
|
||||||
|
|
||||||
|
loop := NewRalphLoop(10, "COMPLETE")
|
||||||
|
result, err := loop.Run(context.Background(), prompt)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Handling Failures
|
||||||
|
|
||||||
|
```go
|
||||||
|
ctx := context.Background()
|
||||||
|
loop := NewRalphLoop(5, "COMPLETE")
|
||||||
|
result, err := loop.Run(ctx, prompt)
|
||||||
|
if err != nil {
|
||||||
|
log.Printf("Task failed: %v", err)
|
||||||
|
log.Printf("Last attempt: %s", loop.LastResponse)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use RALPH-loop
|
||||||
|
|
||||||
|
**Good for:**
|
||||||
|
- Code generation with automatic verification (tests, linters)
|
||||||
|
- Tasks with clear success criteria
|
||||||
|
- Iterative refinement where each attempt learns from previous failures
|
||||||
|
- Unattended long-running improvements
|
||||||
|
|
||||||
|
**Not good for:**
|
||||||
|
- Tasks requiring human judgment or design input
|
||||||
|
- One-shot operations
|
||||||
|
- Tasks with vague success criteria
|
||||||
|
- Real-time interactive debugging
|
||||||
130
cookbook/copilot-sdk/go/recipe/ralph-loop.go
Normal file
130
cookbook/copilot-sdk/go/recipe/ralph-loop.go
Normal file
@@ -0,0 +1,130 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"context"
|
||||||
|
"fmt"
|
||||||
|
"log"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
copilot "github.com/github/copilot-sdk/go"
|
||||||
|
)
|
||||||
|
|
||||||
|
// RalphLoop implements iterative self-referential feedback loops.
|
||||||
|
// The same prompt is sent repeatedly, with AI reading its own previous output.
|
||||||
|
// Loop continues until completion promise is detected in the response.
|
||||||
|
type RalphLoop struct {
|
||||||
|
client *copilot.Client
|
||||||
|
iteration int
|
||||||
|
maxIterations int
|
||||||
|
completionPromise string
|
||||||
|
LastResponse string
|
||||||
|
}
|
||||||
|
|
||||||
|
// NewRalphLoop creates a new RALPH-loop instance.
|
||||||
|
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
|
||||||
|
return &RalphLoop{
|
||||||
|
client: copilot.NewClient(nil),
|
||||||
|
maxIterations: maxIterations,
|
||||||
|
completionPromise: completionPromise,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Run executes the RALPH-loop until completion promise is detected or max iterations reached.
|
||||||
|
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
|
||||||
|
if err := r.client.Start(ctx); err != nil {
|
||||||
|
return "", fmt.Errorf("failed to start client: %w", err)
|
||||||
|
}
|
||||||
|
defer r.client.Stop()
|
||||||
|
|
||||||
|
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
|
||||||
|
Model: "gpt-5.1-codex-mini",
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
return "", fmt.Errorf("failed to create session: %w", err)
|
||||||
|
}
|
||||||
|
defer session.Destroy()
|
||||||
|
|
||||||
|
for r.iteration < r.maxIterations {
|
||||||
|
r.iteration++
|
||||||
|
fmt.Printf("\n=== Iteration %d/%d ===\n", r.iteration, r.maxIterations)
|
||||||
|
|
||||||
|
currentPrompt := r.buildIterationPrompt(initialPrompt)
|
||||||
|
fmt.Printf("Sending prompt (length: %d)...\n", len(currentPrompt))
|
||||||
|
|
||||||
|
result, err := session.SendAndWait(ctx, copilot.MessageOptions{
|
||||||
|
Prompt: currentPrompt,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
return "", fmt.Errorf("send failed on iteration %d: %w", r.iteration, err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if result != nil && result.Data.Content != nil {
|
||||||
|
r.LastResponse = *result.Data.Content
|
||||||
|
} else {
|
||||||
|
r.LastResponse = ""
|
||||||
|
}
|
||||||
|
|
||||||
|
// Display response summary
|
||||||
|
summary := r.LastResponse
|
||||||
|
if len(summary) > 200 {
|
||||||
|
summary = summary[:200] + "..."
|
||||||
|
}
|
||||||
|
fmt.Printf("Response: %s\n", summary)
|
||||||
|
|
||||||
|
// Check for completion promise
|
||||||
|
if strings.Contains(r.LastResponse, r.completionPromise) {
|
||||||
|
fmt.Printf("\n✓ Success! Completion promise detected: '%s'\n", r.completionPromise)
|
||||||
|
return r.LastResponse, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
fmt.Printf("Iteration %d complete. Continuing...\n", r.iteration)
|
||||||
|
}
|
||||||
|
|
||||||
|
return "", fmt.Errorf("maximum iterations (%d) reached without detecting completion promise: '%s'",
|
||||||
|
r.maxIterations, r.completionPromise)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (r *RalphLoop) buildIterationPrompt(initialPrompt string) string {
|
||||||
|
if r.iteration == 1 {
|
||||||
|
return initialPrompt
|
||||||
|
}
|
||||||
|
|
||||||
|
return fmt.Sprintf(`%s
|
||||||
|
|
||||||
|
=== CONTEXT FROM PREVIOUS ITERATION ===
|
||||||
|
%s
|
||||||
|
=== END CONTEXT ===
|
||||||
|
|
||||||
|
Continue working on this task. Review the previous attempt and improve upon it.`,
|
||||||
|
initialPrompt, r.LastResponse)
|
||||||
|
}
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
prompt := `You are iteratively building a small library. Follow these phases IN ORDER.
|
||||||
|
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
|
||||||
|
|
||||||
|
Phase 1: Design a DataValidator struct that validates records against a schema.
|
||||||
|
- Schema defines field names, types (string, int, float, bool), and whether required.
|
||||||
|
- Return a slice of validation errors per record.
|
||||||
|
- Show the struct and method code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
|
||||||
|
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add doc comments, and add
|
||||||
|
an extra edge-case test. Show the final consolidated code with all fixes.
|
||||||
|
When this phase is fully done, output the exact text: COMPLETE`
|
||||||
|
|
||||||
|
ctx := context.Background()
|
||||||
|
loop := NewRalphLoop(5, "COMPLETE")
|
||||||
|
|
||||||
|
result, err := loop.Run(ctx, prompt)
|
||||||
|
if err != nil {
|
||||||
|
log.Printf("Task did not complete: %v", err)
|
||||||
|
log.Printf("Last attempt: %s", loop.LastResponse)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
fmt.Println("\n=== FINAL RESULT ===")
|
||||||
|
fmt.Println(result)
|
||||||
|
}
|
||||||
209
cookbook/copilot-sdk/nodejs/ralph-loop.md
Normal file
209
cookbook/copilot-sdk/nodejs/ralph-loop.md
Normal file
@@ -0,0 +1,209 @@
|
|||||||
|
# RALPH-loop: Iterative Self-Referential AI Loops
|
||||||
|
|
||||||
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
||||||
|
|
||||||
|
> **Runnable example:** [recipe/ralph-loop.ts](recipe/ralph-loop.ts)
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> cd nodejs/recipe
|
||||||
|
> npm install
|
||||||
|
> npx tsx ralph-loop.ts
|
||||||
|
> ```
|
||||||
|
|
||||||
|
## What is RALPH-loop?
|
||||||
|
|
||||||
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
||||||
|
|
||||||
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
||||||
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
||||||
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
||||||
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
||||||
|
|
||||||
|
## Example Scenario
|
||||||
|
|
||||||
|
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
|
||||||
|
|
||||||
|
1. Send the initial prompt with clear success criteria
|
||||||
|
2. Claude writes code and tests
|
||||||
|
3. Claude runs tests and sees failures
|
||||||
|
4. Loop automatically re-sends the prompt
|
||||||
|
5. Claude reads test output and previous code, fixes issues
|
||||||
|
6. Repeat until all tests pass and completion promise is output
|
||||||
|
|
||||||
|
## Basic Implementation
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
import { CopilotClient } from "@github/copilot-sdk";
|
||||||
|
|
||||||
|
class RalphLoop {
|
||||||
|
private client: CopilotClient;
|
||||||
|
private iteration: number = 0;
|
||||||
|
private maxIterations: number;
|
||||||
|
private completionPromise: string;
|
||||||
|
private lastResponse: string | null = null;
|
||||||
|
|
||||||
|
constructor(maxIterations: number = 10, completionPromise: string = "COMPLETE") {
|
||||||
|
this.client = new CopilotClient();
|
||||||
|
this.maxIterations = maxIterations;
|
||||||
|
this.completionPromise = completionPromise;
|
||||||
|
}
|
||||||
|
|
||||||
|
async run(initialPrompt: string): Promise<string> {
|
||||||
|
await this.client.start();
|
||||||
|
const session = await this.client.createSession({ model: "gpt-5" });
|
||||||
|
|
||||||
|
try {
|
||||||
|
while (this.iteration < this.maxIterations) {
|
||||||
|
this.iteration++;
|
||||||
|
console.log(`\n--- Iteration ${this.iteration}/${this.maxIterations} ---`);
|
||||||
|
|
||||||
|
// Build prompt including previous response as context
|
||||||
|
const prompt = this.iteration === 1
|
||||||
|
? initialPrompt
|
||||||
|
: `${initialPrompt}\n\nPrevious attempt:\n${this.lastResponse}\n\nContinue improving...`;
|
||||||
|
|
||||||
|
const response = await session.sendAndWait({ prompt });
|
||||||
|
this.lastResponse = response?.data.content || "";
|
||||||
|
|
||||||
|
console.log(`Response (${this.lastResponse.length} chars)`);
|
||||||
|
|
||||||
|
// Check for completion promise
|
||||||
|
if (this.lastResponse.includes(this.completionPromise)) {
|
||||||
|
console.log(`✓ Completion promise detected: ${this.completionPromise}`);
|
||||||
|
return this.lastResponse;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`Continuing to iteration ${this.iteration + 1}...`);
|
||||||
|
}
|
||||||
|
|
||||||
|
throw new Error(
|
||||||
|
`Max iterations (${this.maxIterations}) reached without completion promise`
|
||||||
|
);
|
||||||
|
} finally {
|
||||||
|
await session.destroy();
|
||||||
|
await this.client.stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Usage
|
||||||
|
const loop = new RalphLoop(5, "COMPLETE");
|
||||||
|
const result = await loop.run("Your task here");
|
||||||
|
console.log(result);
|
||||||
|
```
|
||||||
|
|
||||||
|
## With File Persistence
|
||||||
|
|
||||||
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
import fs from "fs/promises";
|
||||||
|
import path from "path";
|
||||||
|
import { CopilotClient } from "@github/copilot-sdk";
|
||||||
|
|
||||||
|
class PersistentRalphLoop {
|
||||||
|
private client: CopilotClient;
|
||||||
|
private workDir: string;
|
||||||
|
private iteration: number = 0;
|
||||||
|
private maxIterations: number;
|
||||||
|
|
||||||
|
constructor(workDir: string, maxIterations: number = 10) {
|
||||||
|
this.client = new CopilotClient();
|
||||||
|
this.workDir = workDir;
|
||||||
|
this.maxIterations = maxIterations;
|
||||||
|
}
|
||||||
|
|
||||||
|
async run(initialPrompt: string): Promise<string> {
|
||||||
|
await fs.mkdir(this.workDir, { recursive: true });
|
||||||
|
await this.client.start();
|
||||||
|
const session = await this.client.createSession({ model: "gpt-5" });
|
||||||
|
|
||||||
|
try {
|
||||||
|
// Store initial prompt
|
||||||
|
await fs.writeFile(path.join(this.workDir, "prompt.md"), initialPrompt);
|
||||||
|
|
||||||
|
while (this.iteration < this.maxIterations) {
|
||||||
|
this.iteration++;
|
||||||
|
console.log(`\n--- Iteration ${this.iteration} ---`);
|
||||||
|
|
||||||
|
// Build context from previous outputs
|
||||||
|
let context = initialPrompt;
|
||||||
|
const prevOutputFile = path.join(this.workDir, `output-${this.iteration - 1}.txt`);
|
||||||
|
try {
|
||||||
|
const prevOutput = await fs.readFile(prevOutputFile, "utf-8");
|
||||||
|
context += `\n\nPrevious iteration:\n${prevOutput}`;
|
||||||
|
} catch {
|
||||||
|
// No previous output yet
|
||||||
|
}
|
||||||
|
|
||||||
|
const response = await session.sendAndWait({ prompt: context });
|
||||||
|
const output = response?.data.content || "";
|
||||||
|
|
||||||
|
// Persist output
|
||||||
|
await fs.writeFile(
|
||||||
|
path.join(this.workDir, `output-${this.iteration}.txt`),
|
||||||
|
output
|
||||||
|
);
|
||||||
|
|
||||||
|
if (output.includes("COMPLETE")) {
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
throw new Error("Max iterations reached");
|
||||||
|
} finally {
|
||||||
|
await session.destroy();
|
||||||
|
await this.client.stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
||||||
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
||||||
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
||||||
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
||||||
|
5. **Include context**: Feed previous iteration output back as context
|
||||||
|
6. **Monitor progress**: Log each iteration to track what's happening
|
||||||
|
|
||||||
|
## Example: Iterative Code Generation
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
const prompt = `Write a function that:
|
||||||
|
1. Parses CSV data
|
||||||
|
2. Validates required fields
|
||||||
|
3. Returns parsed records or error
|
||||||
|
4. Has unit tests
|
||||||
|
5. Output <promise>COMPLETE</promise> when done`;
|
||||||
|
|
||||||
|
const loop = new RalphLoop(10, "COMPLETE");
|
||||||
|
const result = await loop.run(prompt);
|
||||||
|
```
|
||||||
|
|
||||||
|
## Handling Failures
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
try {
|
||||||
|
const result = await loop.run(prompt);
|
||||||
|
console.log("Task completed successfully!");
|
||||||
|
} catch (error) {
|
||||||
|
console.error("Task failed:", error.message);
|
||||||
|
// Analyze what was attempted and suggest alternatives
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use RALPH-loop
|
||||||
|
|
||||||
|
**Good for:**
|
||||||
|
- Code generation with automatic verification (tests, linters)
|
||||||
|
- Tasks with clear success criteria
|
||||||
|
- Iterative refinement where each attempt learns from previous failures
|
||||||
|
- Unattended long-running improvements
|
||||||
|
|
||||||
|
**Not good for:**
|
||||||
|
- Tasks requiring human judgment or design input
|
||||||
|
- One-shot operations
|
||||||
|
- Tasks with vague success criteria
|
||||||
|
- Real-time interactive debugging
|
||||||
121
cookbook/copilot-sdk/nodejs/recipe/ralph-loop.ts
Normal file
121
cookbook/copilot-sdk/nodejs/recipe/ralph-loop.ts
Normal file
@@ -0,0 +1,121 @@
|
|||||||
|
import { CopilotClient } from "@github/copilot-sdk";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* RALPH-loop implementation: Iterative self-referential AI loops.
|
||||||
|
* The same prompt is sent repeatedly, with AI reading its own previous output.
|
||||||
|
* Loop continues until completion promise is detected in the response.
|
||||||
|
*/
|
||||||
|
class RalphLoop {
|
||||||
|
private client: CopilotClient;
|
||||||
|
private iteration: number = 0;
|
||||||
|
private readonly maxIterations: number;
|
||||||
|
private readonly completionPromise: string;
|
||||||
|
public lastResponse: string | null = null;
|
||||||
|
|
||||||
|
constructor(maxIterations: number = 10, completionPromise: string = "COMPLETE") {
|
||||||
|
this.client = new CopilotClient();
|
||||||
|
this.maxIterations = maxIterations;
|
||||||
|
this.completionPromise = completionPromise;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Run the RALPH-loop until completion promise is detected or max iterations reached.
|
||||||
|
*/
|
||||||
|
async run(initialPrompt: string): Promise<string> {
|
||||||
|
await this.client.start();
|
||||||
|
const session = await this.client.createSession({
|
||||||
|
model: "gpt-5.1-codex-mini"
|
||||||
|
});
|
||||||
|
|
||||||
|
try {
|
||||||
|
while (this.iteration < this.maxIterations) {
|
||||||
|
this.iteration++;
|
||||||
|
console.log(`\n=== Iteration ${this.iteration}/${this.maxIterations} ===`);
|
||||||
|
|
||||||
|
// Build the prompt for this iteration
|
||||||
|
const currentPrompt = this.buildIterationPrompt(initialPrompt);
|
||||||
|
console.log(`Sending prompt (length: ${currentPrompt.length})...`);
|
||||||
|
|
||||||
|
const response = await session.sendAndWait({ prompt: currentPrompt }, 300_000);
|
||||||
|
this.lastResponse = response?.data.content || "";
|
||||||
|
|
||||||
|
// Display response summary
|
||||||
|
const summary = this.lastResponse.length > 200
|
||||||
|
? this.lastResponse.substring(0, 200) + "..."
|
||||||
|
: this.lastResponse;
|
||||||
|
console.log(`Response: ${summary}`);
|
||||||
|
|
||||||
|
// Check for completion promise
|
||||||
|
if (this.lastResponse.includes(this.completionPromise)) {
|
||||||
|
console.log(`\n✓ Success! Completion promise detected: '${this.completionPromise}'`);
|
||||||
|
return this.lastResponse;
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log(`Iteration ${this.iteration} complete. Checking for next iteration...`);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Max iterations reached without completion
|
||||||
|
throw new Error(
|
||||||
|
`Maximum iterations (${this.maxIterations}) reached without detecting completion promise: '${this.completionPromise}'`
|
||||||
|
);
|
||||||
|
} catch (error) {
|
||||||
|
console.error(`\nError during RALPH-loop: ${error instanceof Error ? error.message : String(error)}`);
|
||||||
|
throw error;
|
||||||
|
} finally {
|
||||||
|
await session.destroy();
|
||||||
|
await this.client.stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build the prompt for the current iteration, including previous output as context.
|
||||||
|
*/
|
||||||
|
private buildIterationPrompt(initialPrompt: string): string {
|
||||||
|
if (this.iteration === 1) {
|
||||||
|
// First iteration: just the initial prompt
|
||||||
|
return initialPrompt;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Subsequent iterations: include previous output as context
|
||||||
|
return `${initialPrompt}
|
||||||
|
|
||||||
|
=== CONTEXT FROM PREVIOUS ITERATION ===
|
||||||
|
${this.lastResponse}
|
||||||
|
=== END CONTEXT ===
|
||||||
|
|
||||||
|
Continue working on this task. Review the previous attempt and improve upon it.`;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Example usage demonstrating RALPH-loop
|
||||||
|
async function main() {
|
||||||
|
const prompt = `You are iteratively building a small library. Follow these phases IN ORDER.
|
||||||
|
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
|
||||||
|
|
||||||
|
Phase 1: Design a DataValidator class that validates records against a schema.
|
||||||
|
- Schema defines field names, types (str, int, float, bool), and whether required.
|
||||||
|
- Return a list of validation errors per record.
|
||||||
|
- Show the class code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
|
||||||
|
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
|
||||||
|
an extra edge-case test. Show the final consolidated code with all fixes.
|
||||||
|
When this phase is fully done, output the exact text: COMPLETE`;
|
||||||
|
|
||||||
|
const loop = new RalphLoop(5, "COMPLETE");
|
||||||
|
|
||||||
|
try {
|
||||||
|
const result = await loop.run(prompt);
|
||||||
|
console.log("\n=== FINAL RESULT ===");
|
||||||
|
console.log(result);
|
||||||
|
} catch (error) {
|
||||||
|
console.error(`\nTask did not complete: ${error instanceof Error ? error.message : String(error)}`);
|
||||||
|
if (loop.lastResponse) {
|
||||||
|
console.log(`\nLast attempt:\n${loop.lastResponse}`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
main().catch(console.error);
|
||||||
205
cookbook/copilot-sdk/python/ralph-loop.md
Normal file
205
cookbook/copilot-sdk/python/ralph-loop.md
Normal file
@@ -0,0 +1,205 @@
|
|||||||
|
# RALPH-loop: Iterative Self-Referential AI Loops
|
||||||
|
|
||||||
|
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
||||||
|
|
||||||
|
> **Runnable example:** [recipe/ralph_loop.py](recipe/ralph_loop.py)
|
||||||
|
>
|
||||||
|
> ```bash
|
||||||
|
> cd python/recipe
|
||||||
|
> pip install -r requirements.txt
|
||||||
|
> python ralph_loop.py
|
||||||
|
> ```
|
||||||
|
|
||||||
|
## What is RALPH-loop?
|
||||||
|
|
||||||
|
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
||||||
|
|
||||||
|
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
||||||
|
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
||||||
|
- **Completion detection**: Loop exits when a completion promise is detected in output
|
||||||
|
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
||||||
|
|
||||||
|
## Example Scenario
|
||||||
|
|
||||||
|
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
|
||||||
|
|
||||||
|
1. Send the initial prompt with clear success criteria
|
||||||
|
2. Claude writes code and tests
|
||||||
|
3. Claude runs tests and sees failures
|
||||||
|
4. Loop automatically re-sends the prompt
|
||||||
|
5. Claude reads test output and previous code, fixes issues
|
||||||
|
6. Repeat until all tests pass and completion promise is output
|
||||||
|
|
||||||
|
## Basic Implementation
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||||
|
|
||||||
|
class RalphLoop:
|
||||||
|
"""Iterative self-referential feedback loop using Copilot."""
|
||||||
|
|
||||||
|
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
|
||||||
|
self.client = CopilotClient()
|
||||||
|
self.iteration = 0
|
||||||
|
self.max_iterations = max_iterations
|
||||||
|
self.completion_promise = completion_promise
|
||||||
|
self.last_response = None
|
||||||
|
|
||||||
|
async def run(self, initial_prompt):
|
||||||
|
"""Run the RALPH-loop until completion promise detected or max iterations reached."""
|
||||||
|
await self.client.start()
|
||||||
|
session = await self.client.create_session(
|
||||||
|
SessionConfig(model="gpt-5.1-codex-mini")
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
while self.iteration < self.max_iterations:
|
||||||
|
self.iteration += 1
|
||||||
|
print(f"\n--- Iteration {self.iteration}/{self.max_iterations} ---")
|
||||||
|
|
||||||
|
# Build prompt including previous response as context
|
||||||
|
if self.iteration == 1:
|
||||||
|
prompt = initial_prompt
|
||||||
|
else:
|
||||||
|
prompt = f"{initial_prompt}\n\nPrevious attempt:\n{self.last_response}\n\nContinue improving..."
|
||||||
|
|
||||||
|
result = await session.send_and_wait(
|
||||||
|
MessageOptions(prompt=prompt), timeout=300
|
||||||
|
)
|
||||||
|
|
||||||
|
self.last_response = result.data.content if result else ""
|
||||||
|
print(f"Response ({len(self.last_response)} chars)")
|
||||||
|
|
||||||
|
# Check for completion promise
|
||||||
|
if self.completion_promise in self.last_response:
|
||||||
|
print(f"✓ Completion promise detected: {self.completion_promise}")
|
||||||
|
return self.last_response
|
||||||
|
|
||||||
|
print(f"Continuing to iteration {self.iteration + 1}...")
|
||||||
|
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Max iterations ({self.max_iterations}) reached without completion promise"
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
await session.destroy()
|
||||||
|
await self.client.stop()
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
async def main():
|
||||||
|
loop = RalphLoop(5, "COMPLETE")
|
||||||
|
result = await loop.run("Your task here")
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
## With File Persistence
|
||||||
|
|
||||||
|
For tasks involving code generation, persist state to files so the AI can see changes:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from pathlib import Path
|
||||||
|
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||||
|
|
||||||
|
class PersistentRalphLoop:
|
||||||
|
"""RALPH-loop with file-based state persistence."""
|
||||||
|
|
||||||
|
def __init__(self, work_dir, max_iterations=10):
|
||||||
|
self.client = CopilotClient()
|
||||||
|
self.work_dir = Path(work_dir)
|
||||||
|
self.work_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
self.iteration = 0
|
||||||
|
self.max_iterations = max_iterations
|
||||||
|
|
||||||
|
async def run(self, initial_prompt):
|
||||||
|
"""Run the loop with persistent state."""
|
||||||
|
await self.client.start()
|
||||||
|
session = await self.client.create_session(
|
||||||
|
SessionConfig(model="gpt-5.1-codex-mini")
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Store initial prompt
|
||||||
|
(self.work_dir / "prompt.md").write_text(initial_prompt)
|
||||||
|
|
||||||
|
while self.iteration < self.max_iterations:
|
||||||
|
self.iteration += 1
|
||||||
|
print(f"\n--- Iteration {self.iteration} ---")
|
||||||
|
|
||||||
|
# Build context from previous outputs
|
||||||
|
context = initial_prompt
|
||||||
|
prev_output = self.work_dir / f"output-{self.iteration - 1}.txt"
|
||||||
|
if prev_output.exists():
|
||||||
|
context += f"\n\nPrevious iteration:\n{prev_output.read_text()}"
|
||||||
|
|
||||||
|
result = await session.send_and_wait(
|
||||||
|
MessageOptions(prompt=context), timeout=300
|
||||||
|
)
|
||||||
|
response = result.data.content if result else ""
|
||||||
|
|
||||||
|
# Persist output
|
||||||
|
output_file = self.work_dir / f"output-{self.iteration}.txt"
|
||||||
|
output_file.write_text(response)
|
||||||
|
|
||||||
|
if "COMPLETE" in response:
|
||||||
|
return response
|
||||||
|
|
||||||
|
raise RuntimeError("Max iterations reached")
|
||||||
|
finally:
|
||||||
|
await session.destroy()
|
||||||
|
await self.client.stop()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
||||||
|
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
||||||
|
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
||||||
|
4. **Persist state**: Save files so AI can see what changed between iterations
|
||||||
|
5. **Include context**: Feed previous iteration output back as context
|
||||||
|
6. **Monitor progress**: Log each iteration to track what's happening
|
||||||
|
|
||||||
|
## Example: Iterative Code Generation
|
||||||
|
|
||||||
|
```python
|
||||||
|
prompt = """Write a function that:
|
||||||
|
1. Parses CSV data
|
||||||
|
2. Validates required fields
|
||||||
|
3. Returns parsed records or error
|
||||||
|
4. Has unit tests
|
||||||
|
5. Output <promise>COMPLETE</promise> when done"""
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
loop = RalphLoop(10, "COMPLETE")
|
||||||
|
result = await loop.run(prompt)
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
## Handling Failures
|
||||||
|
|
||||||
|
```python
|
||||||
|
try:
|
||||||
|
result = await loop.run(prompt)
|
||||||
|
print("Task completed successfully!")
|
||||||
|
except RuntimeError as e:
|
||||||
|
print(f"Task failed: {e}")
|
||||||
|
if loop.last_response:
|
||||||
|
print(f"\nLast attempt:\n{loop.last_response}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## When to Use RALPH-loop
|
||||||
|
|
||||||
|
**Good for:**
|
||||||
|
- Code generation with automatic verification (tests, linters)
|
||||||
|
- Tasks with clear success criteria
|
||||||
|
- Iterative refinement where each attempt learns from previous failures
|
||||||
|
- Unattended long-running improvements
|
||||||
|
|
||||||
|
**Not good for:**
|
||||||
|
- Tasks requiring human judgment or design input
|
||||||
|
- One-shot operations
|
||||||
|
- Tasks with vague success criteria
|
||||||
|
- Real-time interactive debugging
|
||||||
123
cookbook/copilot-sdk/python/recipe/ralph_loop.py
Normal file
123
cookbook/copilot-sdk/python/recipe/ralph_loop.py
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||||
|
|
||||||
|
|
||||||
|
class RalphLoop:
|
||||||
|
"""
|
||||||
|
RALPH-loop implementation: Iterative self-referential AI loops.
|
||||||
|
|
||||||
|
The same prompt is sent repeatedly, with AI reading its own previous output.
|
||||||
|
Loop continues until completion promise is detected in the response.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
|
||||||
|
"""Initialize RALPH-loop with iteration limits and completion detection."""
|
||||||
|
self.client = CopilotClient()
|
||||||
|
self.iteration = 0
|
||||||
|
self.max_iterations = max_iterations
|
||||||
|
self.completion_promise = completion_promise
|
||||||
|
self.last_response = None
|
||||||
|
|
||||||
|
async def run(self, initial_prompt):
|
||||||
|
"""
|
||||||
|
Run the RALPH-loop until completion promise is detected or max iterations reached.
|
||||||
|
"""
|
||||||
|
await self.client.start()
|
||||||
|
session = await self.client.create_session(
|
||||||
|
SessionConfig(model="gpt-5.1-codex-mini")
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
while self.iteration < self.max_iterations:
|
||||||
|
self.iteration += 1
|
||||||
|
print(f"\n=== Iteration {self.iteration}/{self.max_iterations} ===")
|
||||||
|
|
||||||
|
current_prompt = self._build_iteration_prompt(initial_prompt)
|
||||||
|
print(f"Sending prompt (length: {len(current_prompt)})...")
|
||||||
|
|
||||||
|
result = await session.send_and_wait(
|
||||||
|
MessageOptions(prompt=current_prompt),
|
||||||
|
timeout=300,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.last_response = result.data.content if result else ""
|
||||||
|
|
||||||
|
# Display response summary
|
||||||
|
summary = (
|
||||||
|
self.last_response[:200] + "..."
|
||||||
|
if len(self.last_response) > 200
|
||||||
|
else self.last_response
|
||||||
|
)
|
||||||
|
print(f"Response: {summary}")
|
||||||
|
|
||||||
|
# Check for completion promise
|
||||||
|
if self.completion_promise in self.last_response:
|
||||||
|
print(
|
||||||
|
f"\n✓ Success! Completion promise detected: '{self.completion_promise}'"
|
||||||
|
)
|
||||||
|
return self.last_response
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Iteration {self.iteration} complete. Checking for next iteration..."
|
||||||
|
)
|
||||||
|
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Maximum iterations ({self.max_iterations}) reached without "
|
||||||
|
f"detecting completion promise: '{self.completion_promise}'"
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\nError during RALPH-loop: {e}")
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
await session.destroy()
|
||||||
|
await self.client.stop()
|
||||||
|
|
||||||
|
def _build_iteration_prompt(self, initial_prompt):
|
||||||
|
"""Build the prompt for the current iteration, including previous output as context."""
|
||||||
|
if self.iteration == 1:
|
||||||
|
return initial_prompt
|
||||||
|
|
||||||
|
return f"""{initial_prompt}
|
||||||
|
|
||||||
|
=== CONTEXT FROM PREVIOUS ITERATION ===
|
||||||
|
{self.last_response}
|
||||||
|
=== END CONTEXT ===
|
||||||
|
|
||||||
|
Continue working on this task. Review the previous attempt and improve upon it."""
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
"""Example usage demonstrating RALPH-loop."""
|
||||||
|
prompt = """You are iteratively building a small library. Follow these phases IN ORDER.
|
||||||
|
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
|
||||||
|
|
||||||
|
Phase 1: Design a DataValidator class that validates records against a schema.
|
||||||
|
- Schema defines field names, types (str, int, float, bool), and whether required.
|
||||||
|
- Return a list of validation errors per record.
|
||||||
|
- Show the class code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
|
||||||
|
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
|
||||||
|
|
||||||
|
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
|
||||||
|
an extra edge-case test. Show the final consolidated code with all fixes.
|
||||||
|
When this phase is fully done, output the exact text: COMPLETE"""
|
||||||
|
|
||||||
|
loop = RalphLoop(max_iterations=5, completion_promise="COMPLETE")
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = await loop.run(prompt)
|
||||||
|
print("\n=== FINAL RESULT ===")
|
||||||
|
print(result)
|
||||||
|
except RuntimeError as e:
|
||||||
|
print(f"\nTask did not complete: {e}")
|
||||||
|
if loop.last_response:
|
||||||
|
print(f"\nLast attempt:\n{loop.last_response}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
Reference in New Issue
Block a user