Add RALPH-loop recipe to Copilot SDK cookbook

Add iterative RALPH-loop (Read, Act, Log, Persist, Halt) pattern
implementations for all four supported languages:

- C#/.NET: ralph-loop.cs with documentation
- Node.js/TypeScript: ralph-loop.ts with documentation
- Python: ralph_loop.py with documentation (async API)
- Go: ralph-loop.go with documentation

Each recipe demonstrates:
- Self-referential iteration where AI reviews its own output
- Completion promise detection to halt the loop
- Max iteration safety limits
- File persistence between iterations

Verified against real Copilot SDK APIs:
- Python: fully verified end-to-end with github-copilot-sdk
- Node.js: fully verified end-to-end with @github/copilot-sdk
- C#: compiles and runs successfully with GitHub.Copilot.SDK
- Go: compiles against github.com/github/copilot-sdk/go v0.1.23
This commit is contained in:
Anthony Shaw
2026-02-11 04:59:20 -08:00
parent 4555fee5d2
commit d8fc473383
9 changed files with 1403 additions and 1 deletions

View File

@@ -6,6 +6,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
### .NET (C#) ### .NET (C#)
- [RALPH-loop](dotnet/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
- [Error Handling](dotnet/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup. - [Error Handling](dotnet/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](dotnet/multiple-sessions.md): Manage multiple independent conversations simultaneously. - [Multiple Sessions](dotnet/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](dotnet/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies. - [Managing Local Files](dotnet/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
@@ -14,6 +15,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
### Node.js / TypeScript ### Node.js / TypeScript
- [RALPH-loop](nodejs/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
- [Error Handling](nodejs/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup. - [Error Handling](nodejs/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](nodejs/multiple-sessions.md): Manage multiple independent conversations simultaneously. - [Multiple Sessions](nodejs/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](nodejs/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies. - [Managing Local Files](nodejs/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
@@ -22,6 +24,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
### Python ### Python
- [RALPH-loop](python/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
- [Error Handling](python/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup. - [Error Handling](python/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](python/multiple-sessions.md): Manage multiple independent conversations simultaneously. - [Multiple Sessions](python/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](python/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies. - [Managing Local Files](python/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
@@ -30,6 +33,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t
### Go ### Go
- [RALPH-loop](go/ralph-loop.md): Implement iterative self-referential AI loops for task completion with automatic retries.
- [Error Handling](go/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup. - [Error Handling](go/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](go/multiple-sessions.md): Manage multiple independent conversations simultaneously. - [Multiple Sessions](go/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](go/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies. - [Managing Local Files](go/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
@@ -83,4 +87,4 @@ go run <filename>.go
## Status ## Status
Cookbook structure is complete with 4 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples. Cookbook structure is complete with 5 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples. The RALPH-loop recipe demonstrates iterative self-referential AI loops for autonomous task completion.

View File

@@ -0,0 +1,238 @@
# RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
> **Runnable example:** [recipe/ralph-loop.cs](recipe/ralph-loop.cs)
>
> ```bash
> cd dotnet/recipe
> dotnet run ralph-loop.cs
> ```
## What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
- **Completion detection**: Loop exits when a completion promise is detected in output
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
## Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
1. Send the initial prompt with clear success criteria
2. Claude writes code and tests
3. Claude runs tests and sees failures
4. Loop automatically re-sends the prompt
5. Claude reads test output and previous code, fixes issues
6. Repeat until all tests pass and completion promise is output
## Basic Implementation
```csharp
using GitHub.Copilot.SDK;
public class RalphLoop
{
private readonly CopilotClient _client;
private int _iteration = 0;
private readonly int _maxIterations;
private readonly string _completionPromise;
private string? _lastResponse;
public RalphLoop(int maxIterations = 10, string completionPromise = "COMPLETE")
{
_client = new CopilotClient();
_maxIterations = maxIterations;
_completionPromise = completionPromise;
}
public async Task<string> RunAsync(string prompt)
{
await _client.StartAsync();
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
try
{
while (_iteration < _maxIterations)
{
_iteration++;
Console.WriteLine($"\n--- Iteration {_iteration} ---");
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
if (evt is AssistantMessageEvent msg)
{
_lastResponse = msg.Data.Content;
done.SetResult(msg.Data.Content);
}
});
// Send prompt (on first iteration) or continuation
var messagePrompt = _iteration == 1
? prompt
: $"{prompt}\n\nPrevious attempt:\n{_lastResponse}\n\nContinue iterating...";
await session.SendAsync(new MessageOptions { Prompt = messagePrompt });
var response = await done.Task;
// Check for completion promise
if (response.Contains(_completionPromise))
{
Console.WriteLine($"✓ Completion promise detected: {_completionPromise}");
return response;
}
Console.WriteLine($"Iteration {_iteration} complete. Continuing...");
}
throw new InvalidOperationException(
$"Max iterations ({_maxIterations}) reached without completion promise");
}
finally
{
await session.DisposeAsync();
await _client.StopAsync();
}
}
}
// Usage
var loop = new RalphLoop(maxIterations: 5, completionPromise: "DONE");
var result = await loop.RunAsync("Your task here");
Console.WriteLine(result);
```
## With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
```csharp
public class PersistentRalphLoop
{
private readonly string _workDir;
private readonly CopilotClient _client;
private int _iteration = 0;
public PersistentRalphLoop(string workDir, int maxIterations = 10)
{
_workDir = workDir;
Directory.CreateDirectory(_workDir);
_client = new CopilotClient();
}
public async Task<string> RunAsync(string prompt)
{
await _client.StartAsync();
var session = await _client.CreateSessionAsync(new SessionConfig { Model = "gpt-5" });
try
{
// Store initial prompt
var promptFile = Path.Combine(_workDir, "prompt.md");
await File.WriteAllTextAsync(promptFile, prompt);
while (_iteration < 10)
{
_iteration++;
Console.WriteLine($"\n--- Iteration {_iteration} ---");
// Build context including previous work
var contextBuilder = new StringBuilder(prompt);
var previousOutput = Path.Combine(_workDir, $"output-{_iteration - 1}.txt");
if (File.Exists(previousOutput))
{
contextBuilder.AppendLine($"\nPrevious iteration output:\n{await File.ReadAllTextAsync(previousOutput)}");
}
var done = new TaskCompletionSource<string>();
string response = "";
session.On(evt =>
{
if (evt is AssistantMessageEvent msg)
{
response = msg.Data.Content;
done.SetResult(msg.Data.Content);
}
});
await session.SendAsync(new MessageOptions { Prompt = contextBuilder.ToString() });
await done.Task;
// Persist output
await File.WriteAllTextAsync(
Path.Combine(_workDir, $"output-{_iteration}.txt"),
response);
if (response.Contains("COMPLETE"))
{
return response;
}
}
throw new InvalidOperationException("Max iterations reached");
}
finally
{
await session.DisposeAsync();
await _client.StopAsync();
}
}
}
```
## Best Practices
1. **Write clear completion criteria**: Include exactly what "done" looks like
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
4. **Persist state**: Save files so AI can see what changed between iterations
5. **Include context**: Feed previous iteration output back as context
6. **Monitor progress**: Log each iteration to track what's happening
## Example: Iterative Code Generation
```csharp
var prompt = @"Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done";
var loop = new RalphLoop(maxIterations: 10, completionPromise: "COMPLETE");
var result = await loop.RunAsync(prompt);
```
## Handling Failures
```csharp
try
{
var result = await loop.RunAsync(prompt);
Console.WriteLine("Task completed successfully!");
}
catch (InvalidOperationException ex) when (ex.Message.Contains("Max iterations"))
{
Console.WriteLine("Task did not complete within iteration limit.");
Console.WriteLine($"Last response: {loop.LastResponse}");
// Document what was attempted and suggest alternatives
}
```
## When to Use RALPH-loop
**Good for:**
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
**Not good for:**
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging

View File

@@ -0,0 +1,132 @@
#:package GitHub.Copilot.SDK@*
#:property PublishAot=false
using GitHub.Copilot.SDK;
using System.Text;
// RALPH-loop: Iterative self-referential AI loops.
// The same prompt is sent repeatedly, with AI reading its own previous output.
// Loop continues until completion promise is detected in the response.
var prompt = @"You are iteratively building a small library. Follow these phases IN ORDER.
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
Phase 1: Design a DataValidator class that validates records against a schema.
- Schema defines field names, types (string, int, float, bool), and whether required.
- Return a list of validation errors per record.
- Show the class code only. Do NOT output COMPLETE.
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
an extra edge-case test. Show the final consolidated code with all fixes.
When this phase is fully done, output the exact text: COMPLETE";
var loop = new RalphLoop(maxIterations: 5, completionPromise: "COMPLETE");
try
{
var result = await loop.RunAsync(prompt);
Console.WriteLine("\n=== FINAL RESULT ===");
Console.WriteLine(result);
}
catch (InvalidOperationException ex)
{
Console.WriteLine($"\nTask did not complete: {ex.Message}");
if (loop.LastResponse != null)
{
Console.WriteLine($"\nLast attempt:\n{loop.LastResponse}");
}
}
// --- RalphLoop class definition ---
public class RalphLoop
{
private readonly CopilotClient _client;
private int _iteration = 0;
private readonly int _maxIterations;
private readonly string _completionPromise;
private string? _lastResponse;
public RalphLoop(int maxIterations = 10, string completionPromise = "COMPLETE")
{
_client = new CopilotClient();
_maxIterations = maxIterations;
_completionPromise = completionPromise;
}
public string? LastResponse => _lastResponse;
public async Task<string> RunAsync(string initialPrompt)
{
await _client.StartAsync();
var session = await _client.CreateSessionAsync(new SessionConfig
{
Model = "gpt-5.1-codex-mini"
});
try
{
while (_iteration < _maxIterations)
{
_iteration++;
Console.WriteLine($"\n=== Iteration {_iteration}/{_maxIterations} ===");
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
if (evt is AssistantMessageEvent msg)
{
_lastResponse = msg.Data.Content;
done.SetResult(msg.Data.Content);
}
});
var currentPrompt = BuildIterationPrompt(initialPrompt);
Console.WriteLine($"Sending prompt (length: {currentPrompt.Length})...");
await session.SendAsync(new MessageOptions { Prompt = currentPrompt });
var response = await done.Task;
var summary = response.Length > 200
? response.Substring(0, 200) + "..."
: response;
Console.WriteLine($"Response: {summary}");
if (response.Contains(_completionPromise))
{
Console.WriteLine($"\n✓ Completion promise detected: '{_completionPromise}'");
return response;
}
Console.WriteLine($"Iteration {_iteration} complete. Continuing...");
}
throw new InvalidOperationException(
$"Max iterations ({_maxIterations}) reached without completion promise: '{_completionPromise}'");
}
finally
{
await session.DisposeAsync();
await _client.StopAsync();
}
}
private string BuildIterationPrompt(string initialPrompt)
{
if (_iteration == 1)
return initialPrompt;
var sb = new StringBuilder();
sb.AppendLine(initialPrompt);
sb.AppendLine();
sb.AppendLine("=== CONTEXT FROM PREVIOUS ITERATION ===");
sb.AppendLine(_lastResponse);
sb.AppendLine("=== END CONTEXT ===");
sb.AppendLine();
sb.AppendLine("Continue working on this task. Review the previous attempt and improve upon it.");
return sb.ToString();
}
}

View File

@@ -0,0 +1,240 @@
# RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
> **Runnable example:** [recipe/ralph-loop.go](recipe/ralph-loop.go)
>
> ```bash
> cd go/recipe
> go run ralph-loop.go
> ```
## What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
- **Completion detection**: Loop exits when a completion promise is detected in output
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
## Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
1. Send the initial prompt with clear success criteria
2. Claude writes code and tests
3. Claude runs tests and sees failures
4. Loop automatically re-sends the prompt
5. Claude reads test output and previous code, fixes issues
6. Repeat until all tests pass and completion promise is output
## Basic Implementation
```go
package main
import (
"context"
"fmt"
"log"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
type RalphLoop struct {
client *copilot.Client
iteration int
maxIterations int
completionPromise string
LastResponse string
}
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
return &RalphLoop{
client: copilot.NewClient(nil),
maxIterations: maxIterations,
completionPromise: completionPromise,
}
}
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
if err := r.client.Start(ctx); err != nil {
return "", err
}
defer r.client.Stop()
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return "", err
}
defer session.Destroy()
for r.iteration < r.maxIterations {
r.iteration++
fmt.Printf("\n--- Iteration %d/%d ---\n", r.iteration, r.maxIterations)
prompt := r.buildIterationPrompt(initialPrompt)
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
if err != nil {
return "", err
}
if result != nil && result.Data.Content != nil {
r.LastResponse = *result.Data.Content
}
if strings.Contains(r.LastResponse, r.completionPromise) {
fmt.Printf("✓ Completion promise detected: %s\n", r.completionPromise)
return r.LastResponse, nil
}
}
return "", fmt.Errorf("max iterations (%d) reached without completion promise",
r.maxIterations)
}
// Usage
func main() {
ctx := context.Background()
loop := NewRalphLoop(5, "COMPLETE")
result, err := loop.Run(ctx, "Your task here")
if err != nil {
log.Fatal(err)
}
fmt.Println(result)
}
```
## With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
```go
package main
import (
"context"
"fmt"
"os"
"path/filepath"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
type PersistentRalphLoop struct {
client *copilot.Client
workDir string
iteration int
maxIterations int
}
func NewPersistentRalphLoop(workDir string, maxIterations int) *PersistentRalphLoop {
os.MkdirAll(workDir, 0755)
return &PersistentRalphLoop{
client: copilot.NewClient(nil),
workDir: workDir,
maxIterations: maxIterations,
}
}
func (p *PersistentRalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
if err := p.client.Start(ctx); err != nil {
return "", err
}
defer p.client.Stop()
os.WriteFile(filepath.Join(p.workDir, "prompt.md"), []byte(initialPrompt), 0644)
session, err := p.client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return "", err
}
defer session.Destroy()
for p.iteration < p.maxIterations {
p.iteration++
prompt := initialPrompt
prevFile := filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration-1))
if data, err := os.ReadFile(prevFile); err == nil {
prompt = fmt.Sprintf("%s\n\nPrevious iteration:\n%s", initialPrompt, string(data))
}
result, err := session.SendAndWait(ctx, copilot.MessageOptions{Prompt: prompt})
if err != nil {
return "", err
}
response := ""
if result != nil && result.Data.Content != nil {
response = *result.Data.Content
}
os.WriteFile(filepath.Join(p.workDir, fmt.Sprintf("output-%d.txt", p.iteration)),
[]byte(response), 0644)
if strings.Contains(response, "COMPLETE") {
return response, nil
}
}
return "", fmt.Errorf("max iterations reached")
}
```
## Best Practices
1. **Write clear completion criteria**: Include exactly what "done" looks like
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
4. **Persist state**: Save files so AI can see what changed between iterations
5. **Include context**: Feed previous iteration output back as context
6. **Monitor progress**: Log each iteration to track what's happening
## Example: Iterative Code Generation
```go
prompt := `Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done`
loop := NewRalphLoop(10, "COMPLETE")
result, err := loop.Run(context.Background(), prompt)
```
## Handling Failures
```go
ctx := context.Background()
loop := NewRalphLoop(5, "COMPLETE")
result, err := loop.Run(ctx, prompt)
if err != nil {
log.Printf("Task failed: %v", err)
log.Printf("Last attempt: %s", loop.LastResponse)
}
```
## When to Use RALPH-loop
**Good for:**
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
**Not good for:**
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging

View File

@@ -0,0 +1,130 @@
package main
import (
"context"
"fmt"
"log"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
// RalphLoop implements iterative self-referential feedback loops.
// The same prompt is sent repeatedly, with AI reading its own previous output.
// Loop continues until completion promise is detected in the response.
type RalphLoop struct {
client *copilot.Client
iteration int
maxIterations int
completionPromise string
LastResponse string
}
// NewRalphLoop creates a new RALPH-loop instance.
func NewRalphLoop(maxIterations int, completionPromise string) *RalphLoop {
return &RalphLoop{
client: copilot.NewClient(nil),
maxIterations: maxIterations,
completionPromise: completionPromise,
}
}
// Run executes the RALPH-loop until completion promise is detected or max iterations reached.
func (r *RalphLoop) Run(ctx context.Context, initialPrompt string) (string, error) {
if err := r.client.Start(ctx); err != nil {
return "", fmt.Errorf("failed to start client: %w", err)
}
defer r.client.Stop()
session, err := r.client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return "", fmt.Errorf("failed to create session: %w", err)
}
defer session.Destroy()
for r.iteration < r.maxIterations {
r.iteration++
fmt.Printf("\n=== Iteration %d/%d ===\n", r.iteration, r.maxIterations)
currentPrompt := r.buildIterationPrompt(initialPrompt)
fmt.Printf("Sending prompt (length: %d)...\n", len(currentPrompt))
result, err := session.SendAndWait(ctx, copilot.MessageOptions{
Prompt: currentPrompt,
})
if err != nil {
return "", fmt.Errorf("send failed on iteration %d: %w", r.iteration, err)
}
if result != nil && result.Data.Content != nil {
r.LastResponse = *result.Data.Content
} else {
r.LastResponse = ""
}
// Display response summary
summary := r.LastResponse
if len(summary) > 200 {
summary = summary[:200] + "..."
}
fmt.Printf("Response: %s\n", summary)
// Check for completion promise
if strings.Contains(r.LastResponse, r.completionPromise) {
fmt.Printf("\n✓ Success! Completion promise detected: '%s'\n", r.completionPromise)
return r.LastResponse, nil
}
fmt.Printf("Iteration %d complete. Continuing...\n", r.iteration)
}
return "", fmt.Errorf("maximum iterations (%d) reached without detecting completion promise: '%s'",
r.maxIterations, r.completionPromise)
}
func (r *RalphLoop) buildIterationPrompt(initialPrompt string) string {
if r.iteration == 1 {
return initialPrompt
}
return fmt.Sprintf(`%s
=== CONTEXT FROM PREVIOUS ITERATION ===
%s
=== END CONTEXT ===
Continue working on this task. Review the previous attempt and improve upon it.`,
initialPrompt, r.LastResponse)
}
func main() {
prompt := `You are iteratively building a small library. Follow these phases IN ORDER.
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
Phase 1: Design a DataValidator struct that validates records against a schema.
- Schema defines field names, types (string, int, float, bool), and whether required.
- Return a slice of validation errors per record.
- Show the struct and method code only. Do NOT output COMPLETE.
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add doc comments, and add
an extra edge-case test. Show the final consolidated code with all fixes.
When this phase is fully done, output the exact text: COMPLETE`
ctx := context.Background()
loop := NewRalphLoop(5, "COMPLETE")
result, err := loop.Run(ctx, prompt)
if err != nil {
log.Printf("Task did not complete: %v", err)
log.Printf("Last attempt: %s", loop.LastResponse)
return
}
fmt.Println("\n=== FINAL RESULT ===")
fmt.Println(result)
}

View File

@@ -0,0 +1,209 @@
# RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
> **Runnable example:** [recipe/ralph-loop.ts](recipe/ralph-loop.ts)
>
> ```bash
> cd nodejs/recipe
> npm install
> npx tsx ralph-loop.ts
> ```
## What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
- **Completion detection**: Loop exits when a completion promise is detected in output
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
## Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
1. Send the initial prompt with clear success criteria
2. Claude writes code and tests
3. Claude runs tests and sees failures
4. Loop automatically re-sends the prompt
5. Claude reads test output and previous code, fixes issues
6. Repeat until all tests pass and completion promise is output
## Basic Implementation
```typescript
import { CopilotClient } from "@github/copilot-sdk";
class RalphLoop {
private client: CopilotClient;
private iteration: number = 0;
private maxIterations: number;
private completionPromise: string;
private lastResponse: string | null = null;
constructor(maxIterations: number = 10, completionPromise: string = "COMPLETE") {
this.client = new CopilotClient();
this.maxIterations = maxIterations;
this.completionPromise = completionPromise;
}
async run(initialPrompt: string): Promise<string> {
await this.client.start();
const session = await this.client.createSession({ model: "gpt-5" });
try {
while (this.iteration < this.maxIterations) {
this.iteration++;
console.log(`\n--- Iteration ${this.iteration}/${this.maxIterations} ---`);
// Build prompt including previous response as context
const prompt = this.iteration === 1
? initialPrompt
: `${initialPrompt}\n\nPrevious attempt:\n${this.lastResponse}\n\nContinue improving...`;
const response = await session.sendAndWait({ prompt });
this.lastResponse = response?.data.content || "";
console.log(`Response (${this.lastResponse.length} chars)`);
// Check for completion promise
if (this.lastResponse.includes(this.completionPromise)) {
console.log(`✓ Completion promise detected: ${this.completionPromise}`);
return this.lastResponse;
}
console.log(`Continuing to iteration ${this.iteration + 1}...`);
}
throw new Error(
`Max iterations (${this.maxIterations}) reached without completion promise`
);
} finally {
await session.destroy();
await this.client.stop();
}
}
}
// Usage
const loop = new RalphLoop(5, "COMPLETE");
const result = await loop.run("Your task here");
console.log(result);
```
## With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
```typescript
import fs from "fs/promises";
import path from "path";
import { CopilotClient } from "@github/copilot-sdk";
class PersistentRalphLoop {
private client: CopilotClient;
private workDir: string;
private iteration: number = 0;
private maxIterations: number;
constructor(workDir: string, maxIterations: number = 10) {
this.client = new CopilotClient();
this.workDir = workDir;
this.maxIterations = maxIterations;
}
async run(initialPrompt: string): Promise<string> {
await fs.mkdir(this.workDir, { recursive: true });
await this.client.start();
const session = await this.client.createSession({ model: "gpt-5" });
try {
// Store initial prompt
await fs.writeFile(path.join(this.workDir, "prompt.md"), initialPrompt);
while (this.iteration < this.maxIterations) {
this.iteration++;
console.log(`\n--- Iteration ${this.iteration} ---`);
// Build context from previous outputs
let context = initialPrompt;
const prevOutputFile = path.join(this.workDir, `output-${this.iteration - 1}.txt`);
try {
const prevOutput = await fs.readFile(prevOutputFile, "utf-8");
context += `\n\nPrevious iteration:\n${prevOutput}`;
} catch {
// No previous output yet
}
const response = await session.sendAndWait({ prompt: context });
const output = response?.data.content || "";
// Persist output
await fs.writeFile(
path.join(this.workDir, `output-${this.iteration}.txt`),
output
);
if (output.includes("COMPLETE")) {
return output;
}
}
throw new Error("Max iterations reached");
} finally {
await session.destroy();
await this.client.stop();
}
}
}
```
## Best Practices
1. **Write clear completion criteria**: Include exactly what "done" looks like
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
4. **Persist state**: Save files so AI can see what changed between iterations
5. **Include context**: Feed previous iteration output back as context
6. **Monitor progress**: Log each iteration to track what's happening
## Example: Iterative Code Generation
```typescript
const prompt = `Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done`;
const loop = new RalphLoop(10, "COMPLETE");
const result = await loop.run(prompt);
```
## Handling Failures
```typescript
try {
const result = await loop.run(prompt);
console.log("Task completed successfully!");
} catch (error) {
console.error("Task failed:", error.message);
// Analyze what was attempted and suggest alternatives
}
```
## When to Use RALPH-loop
**Good for:**
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
**Not good for:**
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging

View File

@@ -0,0 +1,121 @@
import { CopilotClient } from "@github/copilot-sdk";
/**
* RALPH-loop implementation: Iterative self-referential AI loops.
* The same prompt is sent repeatedly, with AI reading its own previous output.
* Loop continues until completion promise is detected in the response.
*/
class RalphLoop {
private client: CopilotClient;
private iteration: number = 0;
private readonly maxIterations: number;
private readonly completionPromise: string;
public lastResponse: string | null = null;
constructor(maxIterations: number = 10, completionPromise: string = "COMPLETE") {
this.client = new CopilotClient();
this.maxIterations = maxIterations;
this.completionPromise = completionPromise;
}
/**
* Run the RALPH-loop until completion promise is detected or max iterations reached.
*/
async run(initialPrompt: string): Promise<string> {
await this.client.start();
const session = await this.client.createSession({
model: "gpt-5.1-codex-mini"
});
try {
while (this.iteration < this.maxIterations) {
this.iteration++;
console.log(`\n=== Iteration ${this.iteration}/${this.maxIterations} ===`);
// Build the prompt for this iteration
const currentPrompt = this.buildIterationPrompt(initialPrompt);
console.log(`Sending prompt (length: ${currentPrompt.length})...`);
const response = await session.sendAndWait({ prompt: currentPrompt }, 300_000);
this.lastResponse = response?.data.content || "";
// Display response summary
const summary = this.lastResponse.length > 200
? this.lastResponse.substring(0, 200) + "..."
: this.lastResponse;
console.log(`Response: ${summary}`);
// Check for completion promise
if (this.lastResponse.includes(this.completionPromise)) {
console.log(`\n✓ Success! Completion promise detected: '${this.completionPromise}'`);
return this.lastResponse;
}
console.log(`Iteration ${this.iteration} complete. Checking for next iteration...`);
}
// Max iterations reached without completion
throw new Error(
`Maximum iterations (${this.maxIterations}) reached without detecting completion promise: '${this.completionPromise}'`
);
} catch (error) {
console.error(`\nError during RALPH-loop: ${error instanceof Error ? error.message : String(error)}`);
throw error;
} finally {
await session.destroy();
await this.client.stop();
}
}
/**
* Build the prompt for the current iteration, including previous output as context.
*/
private buildIterationPrompt(initialPrompt: string): string {
if (this.iteration === 1) {
// First iteration: just the initial prompt
return initialPrompt;
}
// Subsequent iterations: include previous output as context
return `${initialPrompt}
=== CONTEXT FROM PREVIOUS ITERATION ===
${this.lastResponse}
=== END CONTEXT ===
Continue working on this task. Review the previous attempt and improve upon it.`;
}
}
// Example usage demonstrating RALPH-loop
async function main() {
const prompt = `You are iteratively building a small library. Follow these phases IN ORDER.
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
Phase 1: Design a DataValidator class that validates records against a schema.
- Schema defines field names, types (str, int, float, bool), and whether required.
- Return a list of validation errors per record.
- Show the class code only. Do NOT output COMPLETE.
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
an extra edge-case test. Show the final consolidated code with all fixes.
When this phase is fully done, output the exact text: COMPLETE`;
const loop = new RalphLoop(5, "COMPLETE");
try {
const result = await loop.run(prompt);
console.log("\n=== FINAL RESULT ===");
console.log(result);
} catch (error) {
console.error(`\nTask did not complete: ${error instanceof Error ? error.message : String(error)}`);
if (loop.lastResponse) {
console.log(`\nLast attempt:\n${loop.lastResponse}`);
}
}
}
main().catch(console.error);

View File

@@ -0,0 +1,205 @@
# RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
> **Runnable example:** [recipe/ralph_loop.py](recipe/ralph_loop.py)
>
> ```bash
> cd python/recipe
> pip install -r requirements.txt
> python ralph_loop.py
> ```
## What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
- **Completion detection**: Loop exits when a completion promise is detected in output
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
## Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
1. Send the initial prompt with clear success criteria
2. Claude writes code and tests
3. Claude runs tests and sees failures
4. Loop automatically re-sends the prompt
5. Claude reads test output and previous code, fixes issues
6. Repeat until all tests pass and completion promise is output
## Basic Implementation
```python
import asyncio
from copilot import CopilotClient, MessageOptions, SessionConfig
class RalphLoop:
"""Iterative self-referential feedback loop using Copilot."""
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
self.client = CopilotClient()
self.iteration = 0
self.max_iterations = max_iterations
self.completion_promise = completion_promise
self.last_response = None
async def run(self, initial_prompt):
"""Run the RALPH-loop until completion promise detected or max iterations reached."""
await self.client.start()
session = await self.client.create_session(
SessionConfig(model="gpt-5.1-codex-mini")
)
try:
while self.iteration < self.max_iterations:
self.iteration += 1
print(f"\n--- Iteration {self.iteration}/{self.max_iterations} ---")
# Build prompt including previous response as context
if self.iteration == 1:
prompt = initial_prompt
else:
prompt = f"{initial_prompt}\n\nPrevious attempt:\n{self.last_response}\n\nContinue improving..."
result = await session.send_and_wait(
MessageOptions(prompt=prompt), timeout=300
)
self.last_response = result.data.content if result else ""
print(f"Response ({len(self.last_response)} chars)")
# Check for completion promise
if self.completion_promise in self.last_response:
print(f"✓ Completion promise detected: {self.completion_promise}")
return self.last_response
print(f"Continuing to iteration {self.iteration + 1}...")
raise RuntimeError(
f"Max iterations ({self.max_iterations}) reached without completion promise"
)
finally:
await session.destroy()
await self.client.stop()
# Usage
async def main():
loop = RalphLoop(5, "COMPLETE")
result = await loop.run("Your task here")
print(result)
asyncio.run(main())
```
## With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
```python
import asyncio
from pathlib import Path
from copilot import CopilotClient, MessageOptions, SessionConfig
class PersistentRalphLoop:
"""RALPH-loop with file-based state persistence."""
def __init__(self, work_dir, max_iterations=10):
self.client = CopilotClient()
self.work_dir = Path(work_dir)
self.work_dir.mkdir(parents=True, exist_ok=True)
self.iteration = 0
self.max_iterations = max_iterations
async def run(self, initial_prompt):
"""Run the loop with persistent state."""
await self.client.start()
session = await self.client.create_session(
SessionConfig(model="gpt-5.1-codex-mini")
)
try:
# Store initial prompt
(self.work_dir / "prompt.md").write_text(initial_prompt)
while self.iteration < self.max_iterations:
self.iteration += 1
print(f"\n--- Iteration {self.iteration} ---")
# Build context from previous outputs
context = initial_prompt
prev_output = self.work_dir / f"output-{self.iteration - 1}.txt"
if prev_output.exists():
context += f"\n\nPrevious iteration:\n{prev_output.read_text()}"
result = await session.send_and_wait(
MessageOptions(prompt=context), timeout=300
)
response = result.data.content if result else ""
# Persist output
output_file = self.work_dir / f"output-{self.iteration}.txt"
output_file.write_text(response)
if "COMPLETE" in response:
return response
raise RuntimeError("Max iterations reached")
finally:
await session.destroy()
await self.client.stop()
```
## Best Practices
1. **Write clear completion criteria**: Include exactly what "done" looks like
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
4. **Persist state**: Save files so AI can see what changed between iterations
5. **Include context**: Feed previous iteration output back as context
6. **Monitor progress**: Log each iteration to track what's happening
## Example: Iterative Code Generation
```python
prompt = """Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done"""
async def main():
loop = RalphLoop(10, "COMPLETE")
result = await loop.run(prompt)
asyncio.run(main())
```
## Handling Failures
```python
try:
result = await loop.run(prompt)
print("Task completed successfully!")
except RuntimeError as e:
print(f"Task failed: {e}")
if loop.last_response:
print(f"\nLast attempt:\n{loop.last_response}")
```
## When to Use RALPH-loop
**Good for:**
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
**Not good for:**
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging

View File

@@ -0,0 +1,123 @@
#!/usr/bin/env python3
import asyncio
from copilot import CopilotClient, MessageOptions, SessionConfig
class RalphLoop:
"""
RALPH-loop implementation: Iterative self-referential AI loops.
The same prompt is sent repeatedly, with AI reading its own previous output.
Loop continues until completion promise is detected in the response.
"""
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
"""Initialize RALPH-loop with iteration limits and completion detection."""
self.client = CopilotClient()
self.iteration = 0
self.max_iterations = max_iterations
self.completion_promise = completion_promise
self.last_response = None
async def run(self, initial_prompt):
"""
Run the RALPH-loop until completion promise is detected or max iterations reached.
"""
await self.client.start()
session = await self.client.create_session(
SessionConfig(model="gpt-5.1-codex-mini")
)
try:
while self.iteration < self.max_iterations:
self.iteration += 1
print(f"\n=== Iteration {self.iteration}/{self.max_iterations} ===")
current_prompt = self._build_iteration_prompt(initial_prompt)
print(f"Sending prompt (length: {len(current_prompt)})...")
result = await session.send_and_wait(
MessageOptions(prompt=current_prompt),
timeout=300,
)
self.last_response = result.data.content if result else ""
# Display response summary
summary = (
self.last_response[:200] + "..."
if len(self.last_response) > 200
else self.last_response
)
print(f"Response: {summary}")
# Check for completion promise
if self.completion_promise in self.last_response:
print(
f"\n✓ Success! Completion promise detected: '{self.completion_promise}'"
)
return self.last_response
print(
f"Iteration {self.iteration} complete. Checking for next iteration..."
)
raise RuntimeError(
f"Maximum iterations ({self.max_iterations}) reached without "
f"detecting completion promise: '{self.completion_promise}'"
)
except Exception as e:
print(f"\nError during RALPH-loop: {e}")
raise
finally:
await session.destroy()
await self.client.stop()
def _build_iteration_prompt(self, initial_prompt):
"""Build the prompt for the current iteration, including previous output as context."""
if self.iteration == 1:
return initial_prompt
return f"""{initial_prompt}
=== CONTEXT FROM PREVIOUS ITERATION ===
{self.last_response}
=== END CONTEXT ===
Continue working on this task. Review the previous attempt and improve upon it."""
async def main():
"""Example usage demonstrating RALPH-loop."""
prompt = """You are iteratively building a small library. Follow these phases IN ORDER.
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
Phase 1: Design a DataValidator class that validates records against a schema.
- Schema defines field names, types (str, int, float, bool), and whether required.
- Return a list of validation errors per record.
- Show the class code only. Do NOT output COMPLETE.
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
an extra edge-case test. Show the final consolidated code with all fixes.
When this phase is fully done, output the exact text: COMPLETE"""
loop = RalphLoop(max_iterations=5, completion_promise="COMPLETE")
try:
result = await loop.run(prompt)
print("\n=== FINAL RESULT ===")
print(result)
except RuntimeError as e:
print(f"\nTask did not complete: {e}")
if loop.last_response:
print(f"\nLast attempt:\n{loop.last_response}")
if __name__ == "__main__":
asyncio.run(main())