mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-20 02:15:12 +00:00
Add iterative RALPH-loop (Read, Act, Log, Persist, Halt) pattern implementations for all four supported languages: - C#/.NET: ralph-loop.cs with documentation - Node.js/TypeScript: ralph-loop.ts with documentation - Python: ralph_loop.py with documentation (async API) - Go: ralph-loop.go with documentation Each recipe demonstrates: - Self-referential iteration where AI reviews its own output - Completion promise detection to halt the loop - Max iteration safety limits - File persistence between iterations Verified against real Copilot SDK APIs: - Python: fully verified end-to-end with github-copilot-sdk - Node.js: fully verified end-to-end with @github/copilot-sdk - C#: compiles and runs successfully with GitHub.Copilot.SDK - Go: compiles against github.com/github/copilot-sdk/go v0.1.23
6.9 KiB
6.9 KiB
RALPH-loop: Iterative Self-Referential AI Loops
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
Runnable example: recipe/ralph_loop.py
cd python/recipe pip install -r requirements.txt python ralph_loop.py
What is RALPH-loop?
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
- One prompt, multiple iterations: The same prompt is processed repeatedly
- Self-referential feedback: The AI reads its own previous work (file changes, git history)
- Completion detection: Loop exits when a completion promise is detected in output
- Safety limits: Always include a maximum iteration count to prevent infinite loops
Example Scenario
You need to iteratively improve code until all tests pass. Instead of asking Claude to "write perfect code," you use RALPH-loop to:
- Send the initial prompt with clear success criteria
- Claude writes code and tests
- Claude runs tests and sees failures
- Loop automatically re-sends the prompt
- Claude reads test output and previous code, fixes issues
- Repeat until all tests pass and completion promise is output
Basic Implementation
import asyncio
from copilot import CopilotClient, MessageOptions, SessionConfig
class RalphLoop:
"""Iterative self-referential feedback loop using Copilot."""
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
self.client = CopilotClient()
self.iteration = 0
self.max_iterations = max_iterations
self.completion_promise = completion_promise
self.last_response = None
async def run(self, initial_prompt):
"""Run the RALPH-loop until completion promise detected or max iterations reached."""
await self.client.start()
session = await self.client.create_session(
SessionConfig(model="gpt-5.1-codex-mini")
)
try:
while self.iteration < self.max_iterations:
self.iteration += 1
print(f"\n--- Iteration {self.iteration}/{self.max_iterations} ---")
# Build prompt including previous response as context
if self.iteration == 1:
prompt = initial_prompt
else:
prompt = f"{initial_prompt}\n\nPrevious attempt:\n{self.last_response}\n\nContinue improving..."
result = await session.send_and_wait(
MessageOptions(prompt=prompt), timeout=300
)
self.last_response = result.data.content if result else ""
print(f"Response ({len(self.last_response)} chars)")
# Check for completion promise
if self.completion_promise in self.last_response:
print(f"✓ Completion promise detected: {self.completion_promise}")
return self.last_response
print(f"Continuing to iteration {self.iteration + 1}...")
raise RuntimeError(
f"Max iterations ({self.max_iterations}) reached without completion promise"
)
finally:
await session.destroy()
await self.client.stop()
# Usage
async def main():
loop = RalphLoop(5, "COMPLETE")
result = await loop.run("Your task here")
print(result)
asyncio.run(main())
With File Persistence
For tasks involving code generation, persist state to files so the AI can see changes:
import asyncio
from pathlib import Path
from copilot import CopilotClient, MessageOptions, SessionConfig
class PersistentRalphLoop:
"""RALPH-loop with file-based state persistence."""
def __init__(self, work_dir, max_iterations=10):
self.client = CopilotClient()
self.work_dir = Path(work_dir)
self.work_dir.mkdir(parents=True, exist_ok=True)
self.iteration = 0
self.max_iterations = max_iterations
async def run(self, initial_prompt):
"""Run the loop with persistent state."""
await self.client.start()
session = await self.client.create_session(
SessionConfig(model="gpt-5.1-codex-mini")
)
try:
# Store initial prompt
(self.work_dir / "prompt.md").write_text(initial_prompt)
while self.iteration < self.max_iterations:
self.iteration += 1
print(f"\n--- Iteration {self.iteration} ---")
# Build context from previous outputs
context = initial_prompt
prev_output = self.work_dir / f"output-{self.iteration - 1}.txt"
if prev_output.exists():
context += f"\n\nPrevious iteration:\n{prev_output.read_text()}"
result = await session.send_and_wait(
MessageOptions(prompt=context), timeout=300
)
response = result.data.content if result else ""
# Persist output
output_file = self.work_dir / f"output-{self.iteration}.txt"
output_file.write_text(response)
if "COMPLETE" in response:
return response
raise RuntimeError("Max iterations reached")
finally:
await session.destroy()
await self.client.stop()
Best Practices
- Write clear completion criteria: Include exactly what "done" looks like
- Use output markers: Include
<promise>COMPLETE</promise>or similar in completion condition - Always set max iterations: Prevents infinite loops on impossible tasks
- Persist state: Save files so AI can see what changed between iterations
- Include context: Feed previous iteration output back as context
- Monitor progress: Log each iteration to track what's happening
Example: Iterative Code Generation
prompt = """Write a function that:
1. Parses CSV data
2. Validates required fields
3. Returns parsed records or error
4. Has unit tests
5. Output <promise>COMPLETE</promise> when done"""
async def main():
loop = RalphLoop(10, "COMPLETE")
result = await loop.run(prompt)
asyncio.run(main())
Handling Failures
try:
result = await loop.run(prompt)
print("Task completed successfully!")
except RuntimeError as e:
print(f"Task failed: {e}")
if loop.last_response:
print(f"\nLast attempt:\n{loop.last_response}")
When to Use RALPH-loop
Good for:
- Code generation with automatic verification (tests, linters)
- Tasks with clear success criteria
- Iterative refinement where each attempt learns from previous failures
- Unattended long-running improvements
Not good for:
- Tasks requiring human judgment or design input
- One-shot operations
- Tasks with vague success criteria
- Real-time interactive debugging