Add Context Keeper - LLM-driven context & memory system

This commit is contained in:
weixiaofeng12
2025-10-03 11:44:12 +08:00
parent 8407cd0b78
commit 9a0d273085
2 changed files with 2 additions and 0 deletions

View File

@@ -418,6 +418,7 @@ Web 内容访问和自动化功能。支持以 AI 友好格式搜索、抓取和
- [graphlit-mcp-server](https://github.com/graphlit/graphlit-mcp-server) 📇 ☁️ - 将来自Slack、Discord、网站、Google Drive、Linear或GitHub的任何内容摄取到Graphlit项目中然后在诸如Cursor、Windsurf或Cline等MCP客户端中搜索并检索相关知识。
- [@mem0ai/mem0-mcp](https://github.com/mem0ai/mem0-mcp) 🐍 🏠 - 用于 Mem0 的模型上下文协议服务器,帮助管理编码偏好和模式,提供工具用于存储、检索和语义处理代码实现、最佳实践和技术文档,适用于 Cursor 和 Windsurf 等 IDE
- [@ragieai/mcp-server](https://github.com/ragieai/ragie-mcp-server) 📇 ☁️ - 从您的 [Ragie](https://www.ragie.ai) (RAG) 知识库中检索上下文,该知识库连接到 Google Drive、Notion、JIRA 等多种集成。
- [redleaves/context-keeper](https://github.com/redleaves/context-keeper) 🏎️ 🏠 ☁️ 🍎 🪟 🐧 - LLM驱动的智能上下文与记忆管理系统采用宽召回+精排序RAG架构。支持多维度检索向量/时间线/知识图谱)、短期/长期记忆智能转换完整实现MCP协议HTTP/WebSocket/SSE
- [@upstash/context7](https://github.com/upstash/context7) 📇 ☁️ - 最新的LLM和AI代码编辑器的代码文档。
- [JamesANZ/memory-mcp](https://github.com/JamesANZ/memory-mcp) 📇 🏠 - 一个MCP服务器使用MongoDB存储和检索来自多个LLM的记忆。提供保存、检索、添加和清除带有时间戳和LLM识别的对话记忆的工具。
- [JamesANZ/cross-llm-mcp](https://github.com/JamesANZ/cross-llm-mcp) 📇 🏠 - 一个MCP服务器实现跨LLM通信和记忆共享使不同的AI模型能够在对话间协作和共享上下文。

View File

@@ -793,6 +793,7 @@ Persistent memory storage using knowledge graph structures. Enables AI models to
- [pi22by7/In-Memoria](https://github.com/pi22by7/In-Memoria) 📇 🦀 🏠 🍎 🐧 🪟 - Persistent intelligence infrastructure for agentic development that gives AI coding assistants cumulative memory and pattern learning. Hybrid TypeScript/Rust implementation with local-first storage using SQLite + SurrealDB for semantic analysis and incremental codebase understanding.
- [pinecone-io/assistant-mcp](https://github.com/pinecone-io/assistant-mcp) 🎖️ 🦀 ☁️ - Connects to your Pinecone Assistant and gives the agent context from its knowledge engine.
- [ragieai/mcp-server](https://github.com/ragieai/ragie-mcp-server) 📇 ☁️ - Retrieve context from your [Ragie](https://www.ragie.ai) (RAG) knowledge base connected to integrations like Google Drive, Notion, JIRA and more.
- [redleaves/context-keeper](https://github.com/redleaves/context-keeper) 🏎️ 🏠 ☁️ 🍎 🪟 🐧 - LLM-driven context and memory management with wide-recall + precise-reranking RAG architecture. Features multi-dimensional retrieval (vector/timeline/knowledge graph), short/long-term memory, and complete MCP support (HTTP/WebSocket/SSE).
- [TechDocsStudio/biel-mcp](https://github.com/TechDocsStudio/biel-mcp) 📇 ☁️ - Let AI tools like Cursor, VS Code, or Claude Desktop answer questions using your product docs. Biel.ai provides the RAG system and MCP server.
- [topoteretes/cognee](https://github.com/topoteretes/cognee/tree/dev/cognee-mcp) 📇 🏠 - Memory manager for AI apps and Agents using various graph and vector stores and allowing ingestion from 30+ data sources
- [unibaseio/membase-mcp](https://github.com/unibaseio/membase-mcp) 📇 ☁️ - Save and query your agent memory in distributed way by Membase