9.6 KiB
Ralph Loop: Autonomous AI Task Loops
Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window.
Runnable example: recipe/ralph-loop.go
cd go go run recipe/ralph-loop.go
What is a Ralph Loop?
A Ralph loop is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: state lives on disk, not in the model's context. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits.
┌─────────────────────────────────────────────────┐
│ loop.sh │
│ while true: │
│ ┌─────────────────────────────────────────┐ │
│ │ Fresh session (isolated context) │ │
│ │ │ │
│ │ 1. Read PROMPT.md + AGENTS.md │ │
│ │ 2. Study specs/* and code │ │
│ │ 3. Pick next task from plan │ │
│ │ 4. Implement + run tests │ │
│ │ 5. Update plan, commit, exit │ │
│ └─────────────────────────────────────────┘ │
│ ↻ next iteration (fresh context) │
└─────────────────────────────────────────────────┘
Core principles:
- Fresh context per iteration: Each loop creates a new session — no context accumulation, always in the "smart zone"
- Disk as shared state:
IMPLEMENTATION_PLAN.mdpersists between iterations and acts as the coordination mechanism - Backpressure steers quality: Tests, builds, and lints reject bad work — the agent must fix issues before committing
- Two modes: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan)
Simple Version
The minimal Ralph loop — the SDK equivalent of while :; do cat PROMPT.md | copilot ; done:
package main
import (
"context"
"fmt"
"log"
"os"
copilot "github.com/github/copilot-sdk/go"
)
func ralphLoop(ctx context.Context, promptFile string, maxIterations int) error {
client := copilot.NewClient(nil)
if err := client.Start(ctx); err != nil {
return err
}
defer client.Stop()
prompt, err := os.ReadFile(promptFile)
if err != nil {
return err
}
for i := 1; i <= maxIterations; i++ {
fmt.Printf("\n=== Iteration %d/%d ===\n", i, maxIterations)
// Fresh session each iteration — context isolation is the point
session, err := client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
})
if err != nil {
return err
}
_, err = session.SendAndWait(ctx, copilot.MessageOptions{
Prompt: string(prompt),
})
session.Destroy()
if err != nil {
return err
}
fmt.Printf("Iteration %d complete.\n", i)
}
return nil
}
func main() {
if err := ralphLoop(context.Background(), "PROMPT.md", 20); err != nil {
log.Fatal(err)
}
}
This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate.
Ideal Version
The full Ralph pattern with planning and building modes, matching the Ralph Playbook architecture:
package main
import (
"context"
"fmt"
"log"
"os"
"strconv"
"strings"
copilot "github.com/github/copilot-sdk/go"
)
func ralphLoop(ctx context.Context, mode string, maxIterations int) error {
promptFile := "PROMPT_build.md"
if mode == "plan" {
promptFile = "PROMPT_plan.md"
}
client := copilot.NewClient(nil)
if err := client.Start(ctx); err != nil {
return err
}
defer client.Stop()
cwd, _ := os.Getwd()
fmt.Println(strings.Repeat("━", 40))
fmt.Printf("Mode: %s\n", mode)
fmt.Printf("Prompt: %s\n", promptFile)
fmt.Printf("Max: %d iterations\n", maxIterations)
fmt.Println(strings.Repeat("━", 40))
prompt, err := os.ReadFile(promptFile)
if err != nil {
return err
}
for i := 1; i <= maxIterations; i++ {
fmt.Printf("\n=== Iteration %d/%d ===\n", i, maxIterations)
session, err := client.CreateSession(ctx, &copilot.SessionConfig{
Model: "gpt-5.1-codex-mini",
WorkingDirectory: cwd,
OnPermissionRequest: func(_ copilot.PermissionRequest, _ map[string]string) copilot.PermissionRequestResult {
return copilot.PermissionRequestResult{Kind: "approved"}
},
})
if err != nil {
return err
}
// Log tool usage for visibility
session.On(func(event copilot.Event) {
if te, ok := event.(copilot.ToolExecutionStartEvent); ok {
fmt.Printf(" ⚙ %s\n", te.Data.ToolName)
}
})
_, err = session.SendAndWait(ctx, copilot.MessageOptions{
Prompt: string(prompt),
})
session.Destroy()
if err != nil {
return err
}
fmt.Printf("\nIteration %d complete.\n", i)
}
fmt.Printf("\nReached max iterations: %d\n", maxIterations)
return nil
}
func main() {
mode := "build"
maxIterations := 50
for _, arg := range os.Args[1:] {
if arg == "plan" {
mode = "plan"
} else if n, err := strconv.Atoi(arg); err == nil {
maxIterations = n
}
}
if err := ralphLoop(context.Background(), mode, maxIterations); err != nil {
log.Fatal(err)
}
}
Required Project Files
The ideal version expects this file structure in your project:
project-root/
├── PROMPT_plan.md # Planning mode instructions
├── PROMPT_build.md # Building mode instructions
├── AGENTS.md # Operational guide (build/test commands)
├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode)
├── specs/ # Requirement specs (one per topic)
│ ├── auth.md
│ └── data-pipeline.md
└── src/ # Your source code
Example PROMPT_plan.md
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far.
0c. Study `src/` to understand existing code and shared utilities.
1. Compare specs against code (gap analysis). Create or update
IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks
yet to be implemented. Do NOT implement anything.
IMPORTANT: Do NOT assume functionality is missing — search the
codebase first to confirm. Prefer updating existing utilities over
creating ad-hoc copies.
Example PROMPT_build.md
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md.
0c. Study `src/` for reference.
1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before
making changes, search the codebase (don't assume not implemented).
2. After implementing, run the tests. If functionality is missing, add it.
3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately.
4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A`
then `git commit` with a descriptive message.
5. When authoring documentation, capture the why.
6. Implement completely. No placeholders or stubs.
7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it.
Example AGENTS.md
Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context.
## Build & Run
go build ./...
## Validation
- Tests: `go test ./...`
- Vet: `go vet ./...`
Best Practices
- Fresh context per iteration: Never accumulate context across iterations — that's the whole point
- Disk is your database:
IMPLEMENTATION_PLAN.mdis shared state between isolated sessions - Backpressure is essential: Tests, builds, lints in
AGENTS.md— the agent must pass them before committing - Start with PLANNING mode: Generate the plan first, then switch to BUILDING
- Observe and tune: Watch early iterations, add guardrails to prompts when the agent fails in specific ways
- The plan is disposable: If the agent goes off track, delete
IMPLEMENTATION_PLAN.mdand re-plan - Keep
AGENTS.mdbrief: It's loaded every iteration — operational info only, no progress notes - Use a sandbox: The agent runs autonomously with full tool access — isolate it
- Set
WorkingDirectory: Pin the session to your project root so tool operations resolve paths correctly - Auto-approve permissions: Use
OnPermissionRequestto allow tool calls without interrupting the loop
When to Use a Ralph Loop
Good for:
- Implementing features from specs with test-driven validation
- Large refactors broken into many small tasks
- Unattended, long-running development with clear requirements
- Any work where backpressure (tests/builds) can verify correctness
Not good for:
- Tasks requiring human judgment mid-loop
- One-shot operations that don't benefit from iteration
- Vague requirements without testable acceptance criteria
- Exploratory prototyping where direction isn't clear
See Also
- Error Handling — timeout patterns and graceful shutdown for long-running sessions
- Persisting Sessions — save and resume sessions across restarts