Files
awesome-copilot/cookbook/copilot-sdk/go/ralph-loop.md
Anthony Shaw ff69b804ac renaming
2026-02-11 14:23:25 -08:00

9.6 KiB

Ralph Loop: Autonomous AI Task Loops

Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window.

Runnable example: recipe/ralph-loop.go

cd go
go run recipe/ralph-loop.go

What is a Ralph Loop?

A Ralph loop is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: state lives on disk, not in the model's context. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits.

┌─────────────────────────────────────────────────┐
│                   loop.sh                       │
│  while true:                                    │
│    ┌─────────────────────────────────────────┐  │
│    │  Fresh session (isolated context)       │  │
│    │                                         │  │
│    │  1. Read PROMPT.md + AGENTS.md          │  │
│    │  2. Study specs/* and code              │  │
│    │  3. Pick next task from plan            │  │
│    │  4. Implement + run tests               │  │
│    │  5. Update plan, commit, exit           │  │
│    └─────────────────────────────────────────┘  │
│    ↻ next iteration (fresh context)             │
└─────────────────────────────────────────────────┘

Core principles:

  • Fresh context per iteration: Each loop creates a new session — no context accumulation, always in the "smart zone"
  • Disk as shared state: IMPLEMENTATION_PLAN.md persists between iterations and acts as the coordination mechanism
  • Backpressure steers quality: Tests, builds, and lints reject bad work — the agent must fix issues before committing
  • Two modes: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan)

Simple Version

The minimal Ralph loop — the SDK equivalent of while :; do cat PROMPT.md | copilot ; done:

package main

import (
	"context"
	"fmt"
	"log"
	"os"

	copilot "github.com/github/copilot-sdk/go"
)

func ralphLoop(ctx context.Context, promptFile string, maxIterations int) error {
	client := copilot.NewClient(nil)
	if err := client.Start(ctx); err != nil {
		return err
	}
	defer client.Stop()

	prompt, err := os.ReadFile(promptFile)
	if err != nil {
		return err
	}

	for i := 1; i <= maxIterations; i++ {
		fmt.Printf("\n=== Iteration %d/%d ===\n", i, maxIterations)

		// Fresh session each iteration — context isolation is the point
		session, err := client.CreateSession(ctx, &copilot.SessionConfig{
			Model: "gpt-5.1-codex-mini",
		})
		if err != nil {
			return err
		}

		_, err = session.SendAndWait(ctx, copilot.MessageOptions{
			Prompt: string(prompt),
		})
		session.Destroy()
		if err != nil {
			return err
		}

		fmt.Printf("Iteration %d complete.\n", i)
	}
	return nil
}

func main() {
	if err := ralphLoop(context.Background(), "PROMPT.md", 20); err != nil {
		log.Fatal(err)
	}
}

This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate.

Ideal Version

The full Ralph pattern with planning and building modes, matching the Ralph Playbook architecture:

package main

import (
	"context"
	"fmt"
	"log"
	"os"
	"strconv"
	"strings"

	copilot "github.com/github/copilot-sdk/go"
)

func ralphLoop(ctx context.Context, mode string, maxIterations int) error {
	promptFile := "PROMPT_build.md"
	if mode == "plan" {
		promptFile = "PROMPT_plan.md"
	}

	client := copilot.NewClient(nil)
	if err := client.Start(ctx); err != nil {
		return err
	}
	defer client.Stop()

	cwd, _ := os.Getwd()

	fmt.Println(strings.Repeat("━", 40))
	fmt.Printf("Mode:   %s\n", mode)
	fmt.Printf("Prompt: %s\n", promptFile)
	fmt.Printf("Max:    %d iterations\n", maxIterations)
	fmt.Println(strings.Repeat("━", 40))

	prompt, err := os.ReadFile(promptFile)
	if err != nil {
		return err
	}

	for i := 1; i <= maxIterations; i++ {
		fmt.Printf("\n=== Iteration %d/%d ===\n", i, maxIterations)

		session, err := client.CreateSession(ctx, &copilot.SessionConfig{
			Model:            "gpt-5.1-codex-mini",
			WorkingDirectory: cwd,
			OnPermissionRequest: func(_ copilot.PermissionRequest, _ map[string]string) copilot.PermissionRequestResult {
				return copilot.PermissionRequestResult{Kind: "approved"}
			},
		})
		if err != nil {
			return err
		}

		// Log tool usage for visibility
		session.On(func(event copilot.Event) {
			if te, ok := event.(copilot.ToolExecutionStartEvent); ok {
				fmt.Printf("  ⚙ %s\n", te.Data.ToolName)
			}
		})

		_, err = session.SendAndWait(ctx, copilot.MessageOptions{
			Prompt: string(prompt),
		})
		session.Destroy()
		if err != nil {
			return err
		}

		fmt.Printf("\nIteration %d complete.\n", i)
	}

	fmt.Printf("\nReached max iterations: %d\n", maxIterations)
	return nil
}

func main() {
	mode := "build"
	maxIterations := 50

	for _, arg := range os.Args[1:] {
		if arg == "plan" {
			mode = "plan"
		} else if n, err := strconv.Atoi(arg); err == nil {
			maxIterations = n
		}
	}

	if err := ralphLoop(context.Background(), mode, maxIterations); err != nil {
		log.Fatal(err)
	}
}

Required Project Files

The ideal version expects this file structure in your project:

project-root/
├── PROMPT_plan.md              # Planning mode instructions
├── PROMPT_build.md             # Building mode instructions
├── AGENTS.md                   # Operational guide (build/test commands)
├── IMPLEMENTATION_PLAN.md      # Task list (generated by planning mode)
├── specs/                      # Requirement specs (one per topic)
│   ├── auth.md
│   └── data-pipeline.md
└── src/                        # Your source code

Example PROMPT_plan.md

0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far.
0c. Study `src/` to understand existing code and shared utilities.

1. Compare specs against code (gap analysis). Create or update
   IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks
   yet to be implemented. Do NOT implement anything.

IMPORTANT: Do NOT assume functionality is missing — search the
codebase first to confirm. Prefer updating existing utilities over
creating ad-hoc copies.

Example PROMPT_build.md

0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md.
0c. Study `src/` for reference.

1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before
   making changes, search the codebase (don't assume not implemented).
2. After implementing, run the tests. If functionality is missing, add it.
3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately.
4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A`
   then `git commit` with a descriptive message.

5. When authoring documentation, capture the why.
6. Implement completely. No placeholders or stubs.
7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it.

Example AGENTS.md

Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context.

## Build & Run

go build ./...

## Validation

- Tests: `go test ./...`
- Vet: `go vet ./...`

Best Practices

  1. Fresh context per iteration: Never accumulate context across iterations — that's the whole point
  2. Disk is your database: IMPLEMENTATION_PLAN.md is shared state between isolated sessions
  3. Backpressure is essential: Tests, builds, lints in AGENTS.md — the agent must pass them before committing
  4. Start with PLANNING mode: Generate the plan first, then switch to BUILDING
  5. Observe and tune: Watch early iterations, add guardrails to prompts when the agent fails in specific ways
  6. The plan is disposable: If the agent goes off track, delete IMPLEMENTATION_PLAN.md and re-plan
  7. Keep AGENTS.md brief: It's loaded every iteration — operational info only, no progress notes
  8. Use a sandbox: The agent runs autonomously with full tool access — isolate it
  9. Set WorkingDirectory: Pin the session to your project root so tool operations resolve paths correctly
  10. Auto-approve permissions: Use OnPermissionRequest to allow tool calls without interrupting the loop

When to Use a Ralph Loop

Good for:

  • Implementing features from specs with test-driven validation
  • Large refactors broken into many small tasks
  • Unattended, long-running development with clear requirements
  • Any work where backpressure (tests/builds) can verify correctness

Not good for:

  • Tasks requiring human judgment mid-loop
  • One-shot operations that don't benefit from iteration
  • Vague requirements without testable acceptance criteria
  • Exploratory prototyping where direction isn't clear

See Also