- Use context manager and path validation for file reading example - Block directory traversal attacks with os.path.realpath check - Update terminology: whitelist/blacklist -> allowlist/blocklist Co-authored-by: Copilot <223556219+Copilot@users.noreply.github.com>
18 KiB
name, description
| name | description |
|---|---|
| agent-governance | Patterns and techniques for adding governance, safety, and trust controls to AI agent systems. Use this skill when: - Building AI agents that call external tools (APIs, databases, file systems) - Implementing policy-based access controls for agent tool usage - Adding semantic intent classification to detect dangerous prompts - Creating trust scoring systems for multi-agent workflows - Building audit trails for agent actions and decisions - Enforcing rate limits, content filters, or tool restrictions on agents - Working with any agent framework (PydanticAI, CrewAI, OpenAI Agents, LangChain, AutoGen) |
Agent Governance Patterns
Patterns for adding safety, trust, and policy enforcement to AI agent systems.
Overview
Governance patterns ensure AI agents operate within defined boundaries — controlling which tools they can call, what content they can process, how much they can do, and maintaining accountability through audit trails.
User Request → Intent Classification → Policy Check → Tool Execution → Audit Log
↓ ↓ ↓
Threat Detection Allow/Deny Trust Update
When to Use
- Agents with tool access: Any agent that calls external tools (APIs, databases, shell commands)
- Multi-agent systems: Agents delegating to other agents need trust boundaries
- Production deployments: Compliance, audit, and safety requirements
- Sensitive operations: Financial transactions, data access, infrastructure management
Pattern 1: Governance Policy
Define what an agent is allowed to do as a composable, serializable policy object.
from dataclasses import dataclass, field
from enum import Enum
from typing import Optional
import re
class PolicyAction(Enum):
ALLOW = "allow"
DENY = "deny"
REVIEW = "review" # flag for human review
@dataclass
class GovernancePolicy:
"""Declarative policy controlling agent behavior."""
name: str
allowed_tools: list[str] = field(default_factory=list) # allowlist
blocked_tools: list[str] = field(default_factory=list) # blocklist
blocked_patterns: list[str] = field(default_factory=list) # content filters
max_calls_per_request: int = 100 # rate limit
require_human_approval: list[str] = field(default_factory=list) # tools needing approval
def check_tool(self, tool_name: str) -> PolicyAction:
"""Check if a tool is allowed by this policy."""
if tool_name in self.blocked_tools:
return PolicyAction.DENY
if tool_name in self.require_human_approval:
return PolicyAction.REVIEW
if self.allowed_tools and tool_name not in self.allowed_tools:
return PolicyAction.DENY
return PolicyAction.ALLOW
def check_content(self, content: str) -> Optional[str]:
"""Check content against blocked patterns. Returns matched pattern or None."""
for pattern in self.blocked_patterns:
if re.search(pattern, content, re.IGNORECASE):
return pattern
return None
Policy Composition
Combine multiple policies (e.g., org-wide + team + agent-specific):
def compose_policies(*policies: GovernancePolicy) -> GovernancePolicy:
"""Merge policies with most-restrictive-wins semantics."""
combined = GovernancePolicy(name="composed")
for policy in policies:
combined.blocked_tools.extend(policy.blocked_tools)
combined.blocked_patterns.extend(policy.blocked_patterns)
combined.require_human_approval.extend(policy.require_human_approval)
combined.max_calls_per_request = min(
combined.max_calls_per_request,
policy.max_calls_per_request
)
if policy.allowed_tools:
if combined.allowed_tools:
combined.allowed_tools = [
t for t in combined.allowed_tools if t in policy.allowed_tools
]
else:
combined.allowed_tools = list(policy.allowed_tools)
return combined
# Usage: layer policies from broad to specific
org_policy = GovernancePolicy(
name="org-wide",
blocked_tools=["shell_exec", "delete_database"],
blocked_patterns=[r"(?i)(api[_-]?key|secret|password)\s*[:=]"],
max_calls_per_request=50
)
team_policy = GovernancePolicy(
name="data-team",
allowed_tools=["query_db", "read_file", "write_report"],
require_human_approval=["write_report"]
)
agent_policy = compose_policies(org_policy, team_policy)
Policy as YAML
Store policies as configuration, not code:
# governance-policy.yaml
name: production-agent
allowed_tools:
- search_documents
- query_database
- send_email
blocked_tools:
- shell_exec
- delete_record
blocked_patterns:
- "(?i)(api[_-]?key|secret|password)\\s*[:=]"
- "(?i)(drop|truncate|delete from)\\s+\\w+"
max_calls_per_request: 25
require_human_approval:
- send_email
import yaml
def load_policy(path: str) -> GovernancePolicy:
with open(path) as f:
data = yaml.safe_load(f)
return GovernancePolicy(**data)
Pattern 2: Semantic Intent Classification
Detect dangerous intent in prompts before they reach the agent, using pattern-based signals.
from dataclasses import dataclass
@dataclass
class IntentSignal:
category: str # e.g., "data_exfiltration", "privilege_escalation"
confidence: float # 0.0 to 1.0
evidence: str # what triggered the detection
# Weighted signal patterns for threat detection
THREAT_SIGNALS = [
# Data exfiltration
(r"(?i)send\s+(all|every|entire)\s+\w+\s+to\s+", "data_exfiltration", 0.8),
(r"(?i)export\s+.*\s+to\s+(external|outside|third.?party)", "data_exfiltration", 0.9),
(r"(?i)curl\s+.*\s+-d\s+", "data_exfiltration", 0.7),
# Privilege escalation
(r"(?i)(sudo|as\s+root|admin\s+access)", "privilege_escalation", 0.8),
(r"(?i)chmod\s+777", "privilege_escalation", 0.9),
# System modification
(r"(?i)(rm\s+-rf|del\s+/[sq]|format\s+c:)", "system_destruction", 0.95),
(r"(?i)(drop\s+database|truncate\s+table)", "system_destruction", 0.9),
# Prompt injection
(r"(?i)ignore\s+(previous|above|all)\s+(instructions?|rules?)", "prompt_injection", 0.9),
(r"(?i)you\s+are\s+now\s+(a|an)\s+", "prompt_injection", 0.7),
]
def classify_intent(content: str) -> list[IntentSignal]:
"""Classify content for threat signals."""
signals = []
for pattern, category, weight in THREAT_SIGNALS:
match = re.search(pattern, content)
if match:
signals.append(IntentSignal(
category=category,
confidence=weight,
evidence=match.group()
))
return signals
def is_safe(content: str, threshold: float = 0.7) -> bool:
"""Quick check: is the content safe above the given threshold?"""
signals = classify_intent(content)
return not any(s.confidence >= threshold for s in signals)
Key insight: Intent classification happens before tool execution, acting as a pre-flight safety check. This is fundamentally different from output guardrails which only check after generation.
Pattern 3: Tool-Level Governance Decorator
Wrap individual tool functions with governance checks:
import functools
import time
from collections import defaultdict
_call_counters: dict[str, int] = defaultdict(int)
def govern(policy: GovernancePolicy, audit_trail=None):
"""Decorator that enforces governance policy on a tool function."""
def decorator(func):
@functools.wraps(func)
async def wrapper(*args, **kwargs):
tool_name = func.__name__
# 1. Check tool allowlist/blocklist
action = policy.check_tool(tool_name)
if action == PolicyAction.DENY:
raise PermissionError(f"Policy '{policy.name}' blocks tool '{tool_name}'")
if action == PolicyAction.REVIEW:
raise PermissionError(f"Tool '{tool_name}' requires human approval")
# 2. Check rate limit
_call_counters[policy.name] += 1
if _call_counters[policy.name] > policy.max_calls_per_request:
raise PermissionError(f"Rate limit exceeded: {policy.max_calls_per_request} calls")
# 3. Check content in arguments
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, str):
matched = policy.check_content(arg)
if matched:
raise PermissionError(f"Blocked pattern detected: {matched}")
# 4. Execute and audit
start = time.monotonic()
try:
result = await func(*args, **kwargs)
if audit_trail is not None:
audit_trail.append({
"tool": tool_name,
"action": "allowed",
"duration_ms": (time.monotonic() - start) * 1000,
"timestamp": time.time()
})
return result
except Exception as e:
if audit_trail is not None:
audit_trail.append({
"tool": tool_name,
"action": "error",
"error": str(e),
"timestamp": time.time()
})
raise
return wrapper
return decorator
# Usage with any agent framework
audit_log = []
policy = GovernancePolicy(
name="search-agent",
allowed_tools=["search", "summarize"],
blocked_patterns=[r"(?i)password"],
max_calls_per_request=10
)
@govern(policy, audit_trail=audit_log)
async def search(query: str) -> str:
"""Search documents — governed by policy."""
return f"Results for: {query}"
# Passes: search("latest quarterly report")
# Blocked: search("show me the admin password")
Pattern 4: Trust Scoring
Track agent reliability over time with decay-based trust scores:
from dataclasses import dataclass, field
import math
import time
@dataclass
class TrustScore:
"""Trust score with temporal decay."""
score: float = 0.5 # 0.0 (untrusted) to 1.0 (fully trusted)
successes: int = 0
failures: int = 0
last_updated: float = field(default_factory=time.time)
def record_success(self, reward: float = 0.05):
self.successes += 1
self.score = min(1.0, self.score + reward * (1 - self.score))
self.last_updated = time.time()
def record_failure(self, penalty: float = 0.15):
self.failures += 1
self.score = max(0.0, self.score - penalty * self.score)
self.last_updated = time.time()
def current(self, decay_rate: float = 0.001) -> float:
"""Get score with temporal decay — trust erodes without activity."""
elapsed = time.time() - self.last_updated
decay = math.exp(-decay_rate * elapsed)
return self.score * decay
@property
def reliability(self) -> float:
total = self.successes + self.failures
return self.successes / total if total > 0 else 0.0
# Usage in multi-agent systems
trust = TrustScore()
# Agent completes tasks successfully
trust.record_success() # 0.525
trust.record_success() # 0.549
# Agent makes an error
trust.record_failure() # 0.467
# Gate sensitive operations on trust
if trust.current() >= 0.7:
# Allow autonomous operation
pass
elif trust.current() >= 0.4:
# Allow with human oversight
pass
else:
# Deny or require explicit approval
pass
Multi-agent trust: In systems where agents delegate to other agents, each agent maintains trust scores for its delegates:
class AgentTrustRegistry:
def __init__(self):
self.scores: dict[str, TrustScore] = {}
def get_trust(self, agent_id: str) -> TrustScore:
if agent_id not in self.scores:
self.scores[agent_id] = TrustScore()
return self.scores[agent_id]
def most_trusted(self, agents: list[str]) -> str:
return max(agents, key=lambda a: self.get_trust(a).current())
def meets_threshold(self, agent_id: str, threshold: float) -> bool:
return self.get_trust(agent_id).current() >= threshold
Pattern 5: Audit Trail
Append-only audit log for all agent actions — critical for compliance and debugging:
from dataclasses import dataclass, field
import json
import time
@dataclass
class AuditEntry:
timestamp: float
agent_id: str
tool_name: str
action: str # "allowed", "denied", "error"
policy_name: str
details: dict = field(default_factory=dict)
class AuditTrail:
"""Append-only audit trail for agent governance events."""
def __init__(self):
self._entries: list[AuditEntry] = []
def log(self, agent_id: str, tool_name: str, action: str,
policy_name: str, **details):
self._entries.append(AuditEntry(
timestamp=time.time(),
agent_id=agent_id,
tool_name=tool_name,
action=action,
policy_name=policy_name,
details=details
))
def denied(self) -> list[AuditEntry]:
"""Get all denied actions — useful for security review."""
return [e for e in self._entries if e.action == "denied"]
def by_agent(self, agent_id: str) -> list[AuditEntry]:
return [e for e in self._entries if e.agent_id == agent_id]
def export_jsonl(self, path: str):
"""Export as JSON Lines for log aggregation systems."""
with open(path, "w") as f:
for entry in self._entries:
f.write(json.dumps({
"timestamp": entry.timestamp,
"agent_id": entry.agent_id,
"tool": entry.tool_name,
"action": entry.action,
"policy": entry.policy_name,
**entry.details
}) + "\n")
Pattern 6: Framework Integration
PydanticAI
from pydantic_ai import Agent
policy = GovernancePolicy(
name="support-bot",
allowed_tools=["search_docs", "create_ticket"],
blocked_patterns=[r"(?i)(ssn|social\s+security|credit\s+card)"],
max_calls_per_request=20
)
agent = Agent("openai:gpt-4o", system_prompt="You are a support assistant.")
@agent.tool
@govern(policy)
async def search_docs(ctx, query: str) -> str:
"""Search knowledge base — governed."""
return await kb.search(query)
@agent.tool
@govern(policy)
async def create_ticket(ctx, title: str, body: str) -> str:
"""Create support ticket — governed."""
return await tickets.create(title=title, body=body)
CrewAI
from crewai import Agent, Task, Crew
policy = GovernancePolicy(
name="research-crew",
allowed_tools=["search", "analyze"],
max_calls_per_request=30
)
# Apply governance at the crew level
def governed_crew_run(crew: Crew, policy: GovernancePolicy):
"""Wrap crew execution with governance checks."""
audit = AuditTrail()
for agent in crew.agents:
for tool in agent.tools:
original = tool.func
tool.func = govern(policy, audit_trail=audit)(original)
result = crew.kickoff()
return result, audit
OpenAI Agents SDK
from agents import Agent, function_tool
policy = GovernancePolicy(
name="coding-agent",
allowed_tools=["read_file", "write_file", "run_tests"],
blocked_tools=["shell_exec"],
max_calls_per_request=50
)
@function_tool
@govern(policy)
async def read_file(path: str) -> str:
"""Read file contents — governed."""
import os
safe_path = os.path.realpath(path)
if not safe_path.startswith(os.path.realpath(".")):
raise ValueError("Path traversal blocked by governance")
with open(safe_path) as f:
return f.read()
Governance Levels
Match governance strictness to risk level:
| Level | Controls | Use Case |
|---|---|---|
| Open | Audit only, no restrictions | Internal dev/testing |
| Standard | Tool allowlist + content filters | General production agents |
| Strict | All controls + human approval for sensitive ops | Financial, healthcare, legal |
| Locked | Allowlist only, no dynamic tools, full audit | Compliance-critical systems |
Best Practices
| Practice | Rationale |
|---|---|
| Policy as configuration | Store policies in YAML/JSON, not hardcoded — enables change without deploys |
| Most-restrictive-wins | When composing policies, deny always overrides allow |
| Pre-flight intent check | Classify intent before tool execution, not after |
| Trust decay | Trust scores should decay over time — require ongoing good behavior |
| Append-only audit | Never modify or delete audit entries — immutability enables compliance |
| Fail closed | If governance check errors, deny the action rather than allowing it |
| Separate policy from logic | Governance enforcement should be independent of agent business logic |
Quick Start Checklist
## Agent Governance Implementation Checklist
### Setup
- [ ] Define governance policy (allowed tools, blocked patterns, rate limits)
- [ ] Choose governance level (open/standard/strict/locked)
- [ ] Set up audit trail storage
### Implementation
- [ ] Add @govern decorator to all tool functions
- [ ] Add intent classification to user input processing
- [ ] Implement trust scoring for multi-agent interactions
- [ ] Wire up audit trail export
### Validation
- [ ] Test that blocked tools are properly denied
- [ ] Test that content filters catch sensitive patterns
- [ ] Test rate limiting behavior
- [ ] Verify audit trail captures all events
- [ ] Test policy composition (most-restrictive-wins)
Related Resources
- Agent-OS Governance Engine — Full governance framework
- AgentMesh Integrations — Framework-specific packages
- OWASP Top 10 for LLM Applications