9.9 KiB
Ralph Loop: Autonomous AI Task Loops
Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window.
Runnable example: recipe/ralph-loop.cs
cd dotnet dotnet run recipe/ralph-loop.cs
What is a Ralph Loop?
A Ralph loop is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: state lives on disk, not in the model's context. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits.
┌─────────────────────────────────────────────────┐
│ loop.sh │
│ while true: │
│ ┌─────────────────────────────────────────┐ │
│ │ Fresh session (isolated context) │ │
│ │ │ │
│ │ 1. Read PROMPT.md + AGENTS.md │ │
│ │ 2. Study specs/* and code │ │
│ │ 3. Pick next task from plan │ │
│ │ 4. Implement + run tests │ │
│ │ 5. Update plan, commit, exit │ │
│ └─────────────────────────────────────────┘ │
│ ↻ next iteration (fresh context) │
└─────────────────────────────────────────────────┘
Core principles:
- Fresh context per iteration: Each loop creates a new session — no context accumulation, always in the "smart zone"
- Disk as shared state:
IMPLEMENTATION_PLAN.mdpersists between iterations and acts as the coordination mechanism - Backpressure steers quality: Tests, builds, and lints reject bad work — the agent must fix issues before committing
- Two modes: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan)
Simple Version
The minimal Ralph loop — the SDK equivalent of while :; do cat PROMPT.md | copilot ; done:
using GitHub.Copilot.SDK;
var client = new CopilotClient();
await client.StartAsync();
try
{
var prompt = await File.ReadAllTextAsync("PROMPT.md");
var maxIterations = 50;
for (var i = 1; i <= maxIterations; i++)
{
Console.WriteLine($"\n=== Iteration {i}/{maxIterations} ===");
// Fresh session each iteration — context isolation is the point
var session = await client.CreateSessionAsync(
new SessionConfig { Model = "gpt-5.1-codex-mini" });
try
{
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
if (evt is AssistantMessageEvent msg)
done.TrySetResult(msg.Data.Content);
});
await session.SendAsync(new MessageOptions { Prompt = prompt });
await done.Task;
}
finally
{
await session.DisposeAsync();
}
Console.WriteLine($"Iteration {i} complete.");
}
}
finally
{
await client.StopAsync();
}
This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate.
Ideal Version
The full Ralph pattern with planning and building modes, matching the Ralph Playbook architecture:
using GitHub.Copilot.SDK;
// Parse args: dotnet run [plan] [max_iterations]
var mode = args.Contains("plan") ? "plan" : "build";
var maxArg = args.FirstOrDefault(a => int.TryParse(a, out _));
var maxIterations = maxArg != null ? int.Parse(maxArg) : 50;
var promptFile = mode == "plan" ? "PROMPT_plan.md" : "PROMPT_build.md";
var client = new CopilotClient();
await client.StartAsync();
Console.WriteLine(new string('━', 40));
Console.WriteLine($"Mode: {mode}");
Console.WriteLine($"Prompt: {promptFile}");
Console.WriteLine($"Max: {maxIterations} iterations");
Console.WriteLine(new string('━', 40));
try
{
var prompt = await File.ReadAllTextAsync(promptFile);
for (var i = 1; i <= maxIterations; i++)
{
Console.WriteLine($"\n=== Iteration {i}/{maxIterations} ===");
// Fresh session — each task gets full context budget
var session = await client.CreateSessionAsync(
new SessionConfig
{
Model = "gpt-5.1-codex-mini",
// Pin the agent to the project directory
WorkingDirectory = Environment.CurrentDirectory,
// Auto-approve tool calls for unattended operation
OnPermissionRequest = (_, _) => Task.FromResult(
new PermissionRequestResult { Kind = "approved" }),
});
try
{
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
// Log tool usage for visibility
if (evt is ToolExecutionStartEvent toolStart)
Console.WriteLine($" ⚙ {toolStart.Data.ToolName}");
else if (evt is AssistantMessageEvent msg)
done.TrySetResult(msg.Data.Content);
});
await session.SendAsync(new MessageOptions { Prompt = prompt });
await done.Task;
}
finally
{
await session.DisposeAsync();
}
Console.WriteLine($"\nIteration {i} complete.");
}
Console.WriteLine($"\nReached max iterations: {maxIterations}");
}
finally
{
await client.StopAsync();
}
Required Project Files
The ideal version expects this file structure in your project:
project-root/
├── PROMPT_plan.md # Planning mode instructions
├── PROMPT_build.md # Building mode instructions
├── AGENTS.md # Operational guide (build/test commands)
├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode)
├── specs/ # Requirement specs (one per topic)
│ ├── auth.md
│ └── data-pipeline.md
└── src/ # Your source code
Example PROMPT_plan.md
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far.
0c. Study `src/` to understand existing code and shared utilities.
1. Compare specs against code (gap analysis). Create or update
IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks
yet to be implemented. Do NOT implement anything.
IMPORTANT: Do NOT assume functionality is missing — search the
codebase first to confirm. Prefer updating existing utilities over
creating ad-hoc copies.
Example PROMPT_build.md
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md.
0c. Study `src/` for reference.
1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before
making changes, search the codebase (don't assume not implemented).
2. After implementing, run the tests. If functionality is missing, add it.
3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately.
4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A`
then `git commit` with a descriptive message.
5. When authoring documentation, capture the why.
6. Implement completely. No placeholders or stubs.
7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it.
Example AGENTS.md
Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context.
## Build & Run
dotnet build
## Validation
- Tests: `dotnet test`
- Build: `dotnet build --no-restore`
Best Practices
- Fresh context per iteration: Never accumulate context across iterations — that's the whole point
- Disk is your database:
IMPLEMENTATION_PLAN.mdis shared state between isolated sessions - Backpressure is essential: Tests, builds, lints in
AGENTS.md— the agent must pass them before committing - Start with PLANNING mode: Generate the plan first, then switch to BUILDING
- Observe and tune: Watch early iterations, add guardrails to prompts when the agent fails in specific ways
- The plan is disposable: If the agent goes off track, delete
IMPLEMENTATION_PLAN.mdand re-plan - Keep
AGENTS.mdbrief: It's loaded every iteration — operational info only, no progress notes - Use a sandbox: The agent runs autonomously with full tool access — isolate it
- Set
WorkingDirectory: Pin the session to your project root so tool operations resolve paths correctly - Auto-approve permissions: Use
OnPermissionRequestto allow tool calls without interrupting the loop
When to Use a Ralph Loop
Good for:
- Implementing features from specs with test-driven validation
- Large refactors broken into many small tasks
- Unattended, long-running development with clear requirements
- Any work where backpressure (tests/builds) can verify correctness
Not good for:
- Tasks requiring human judgment mid-loop
- One-shot operations that don't benefit from iteration
- Vague requirements without testable acceptance criteria
- Exploratory prototyping where direction isn't clear
See Also
- Error Handling — timeout patterns and graceful shutdown for long-running sessions
- Persisting Sessions — save and resume sessions across restarts