32 KiB
555
The LM555/NE555/SA555 is a highly stable controller capable of producing accurate timing pulses. With a monostable operation, the time delay is controlled by one external resistor and one capacitor. With an astable operation, the frequency and duty cycle are accurately controlled by two external resistors and one capacitor.
Features
- High Current Drive Capability (200mA)
- Adjustable Duty Cycle
- Temperature Stability of 0.005%/°C
- Timing From μSec to Hours
- Turn off Time Less Than 2μSec
Applications
- Precision Timing
- Pulse Generation
- Time Delay Generation
- Sequential Timing
Internal Block Diagram
flowchart TB
subgraph IC["555 Timer IC"]
direction TB
subgraph DIVIDER["Voltage Divider"]
R1["R (5kΩ)"]
R2["R (5kΩ)"]
R3["R (5kΩ)"]
R1 --- R2 --- R3
end
COMP1["Comparator 1<br/>(Threshold)"]
COMP2["Comparator 2<br/>(Trigger)"]
FF["Flip-Flop<br/>S-R"]
OUT_STAGE["Output<br/>Stage"]
DISCH_TR["Discharge<br/>Transistor"]
VREF["Vref"]
end
PIN8["Pin 8<br/>Vcc"] --> R1
R3 --> PIN1["Pin 1<br/>GND"]
R1 -.->|"2/3 Vcc"| COMP1
R2 -.->|"1/3 Vcc"| COMP2
PIN6["Pin 6<br/>Threshold"] --> COMP1
PIN2["Pin 2<br/>Trigger"] --> COMP2
COMP1 -->|R| FF
COMP2 -->|S| FF
FF --> OUT_STAGE
FF --> DISCH_TR
OUT_STAGE --> PIN3["Pin 3<br/>Output"]
DISCH_TR --> PIN7["Pin 7<br/>Discharge"]
PIN4["Pin 4<br/>Reset"] --> FF
PIN5["Pin 5<br/>Control Voltage"] -.-> R2
style PIN1 fill:#000,color:#fff
style PIN2 fill:#f96,color:#000
style PIN3 fill:#6f6,color:#000
style PIN4 fill:#f66,color:#000
style PIN5 fill:#ff6,color:#000
style PIN6 fill:#6ff,color:#000
style PIN7 fill:#f6f,color:#000
style PIN8 fill:#f00,color:#fff
Pin Configuration:
| Pin | Name | Function |
|---|---|---|
| 1 | GND | Ground reference |
| 2 | TRIG | Trigger input (< 1/3 Vcc starts timing) |
| 3 | OUT | Output (high or low) |
| 4 | RESET | Active low reset |
| 5 | CONT | Control voltage (2/3 Vcc reference) |
| 6 | THRES | Threshold input (> 2/3 Vcc ends timing) |
| 7 | DISCH | Discharge (open collector) |
| 8 | Vcc | Supply voltage (+4.5V to +16V) |
Absolute Maximum Ratings (Ta = 25°C)
| Parameter | Symbol | Value | Unit |
|---|---|---|---|
| Supply Voltage | Vcc | 16 | V |
| Lead temperature (soldering 10 sec) | Tled | 300 | °C |
| Power Dissipation | PD | 600 | mW |
| Operating Temperature Range LM555/NE555 SA555 |
Topr | - 65 ~ + 150 | °C |
Electrical Characteristics
(TA = 250C, vcc = 5 15V, unless otherwise specified)
| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Unit |
|---|---|---|---|---|---|---|
| Supply Voltage | vcc | - | 4.5 | - | 16 | V |
| Supply Current (Low Stable) (Note 1) | Icc | Vcc = 5V, Rl = ∞ Vcc = 15V, Rl = ∞ |
- - |
3 7.5 |
6 15 |
mA mA |
| Timing Error (Monostable) Initial Accuracy (Note2) Drift with Temperature (Note4) Drift with Supply Voltage (Note4) |
ACCUR Δt/ΔT Δt/ΔVcc |
Ra = 1kΩ to100kΩ C = 0.1μF |
- | 1.0 50 0.1 |
3.0 0.5 |
% ppm/°C %/V |
| Timing Error (Astable) Initial Accuracy (Note2) Drift with Temperature (Note4) Drift with Supply Voltage (Note4) |
ACCUR Δt/ΔT Δt/ΔVcc |
Ra = 1kΩ to 100kΩ C = 0.1μF |
- | 2.25 150 0.3 |
- | % ppm/°C %/V |
| Control Voltage | Vc | Vcc = 15V Vcc = 5V |
9.0 2.6 |
10.0 3.33 |
11.0 4.0 |
V V |
| Threshold Voltage | VTH | VCC = 15V VCC = 5V |
- - |
10.0 3.33 |
- - |
V V |
| Threshold Current (Note3) | Ith | - | - | 0.1 | 0.25 | μA |
| Trigger Voltage | VTR | VCC = 5V VCC = 15V |
1.1 4.5 |
1.67 5 |
2.2 5.6 |
V V |
| Trigger Current | ITR | VTR = 0V | 0.01 | 2.0 | μA | |
| Reset Voltage | VRST | - | 0.4 | 0.7 | 1.0 | V |
| Reset Current | IRST | - | 0.1 | 0.4 | mA | |
| Low Output Voltage | VOL | VCC = 15V ISINK = 10mA ISINK = 50mA VCC = 5V ISINK = 5mA |
- - |
0.06 0.3 0.05 |
0.25 0.75 0.35 |
V V V |
| High Output Voltage | VOH | VCC = 15V ISOURCE = 200mA ISOURCE = 100mA VCC = 5V ISOURCE = 100mA |
12.75 2.75 |
12.5 13.3 3.3 |
- - |
V V V |
| Rise Time of Output (Note4) | tR | - | - | 100 | - | ns |
| Fall Time of Output (Note4) | tF | - | - | 100 | - | ns |
| Discharge Leakage Current | ILKG | - | - | 20 | 100 | nA |
Notes:
- When the output is high. the supply current is typically 1mA less than at VCC = 5V.
- Tested at VCC = 5.0V and VCC = 15V.
- This will determine the maximum value of RA + RB for 15V operation, the max- total R = 20MQ. and for 5V operation, the max/
- total R 8.7MΩ
- These parameters, although guaranteed. are not 100% tested in production.
Application Information
Table 1 below is the basic operating table of 555 timer:
| Threshold Voltage (Vth)(PIN 6) |
Trigger Voltage (Vtr)(PIN 2) |
Reset(PIN 4) | Output(PIN 3) | Discharging Tr. (PIN 7) |
|---|---|---|---|---|
| Don't care | Don't care | Low | Low | ON |
| Vth > 2Vcc / 3 | Vth > 2Vcc / 3 | High | Low | ON |
| Vcc / 3 < Vth < 2 Vcc / 3 | Vcc / 3 < Vth < 2 Vcc / 3 | High | - | - |
| Vth < Vcc / 3 | Vth < Vcc / 3 | High | High | OFF |
When the low signal input is applied to the reset terminal, the timer output remains low regardless of the threshold voltage or the trigger voltage. Only when the high signal is applied to the reset terminal, the timer's output changes according to threshold voltage and trigger voltage. When the threshold voltage exceeds 2/3 of the supply voltage while the timer output is high, the timer's internal discharge Tr. turns on, lowering the threshold voltage to below 1/3 of the supply voltage. During this time, the timer output is maintained low. Later, if a low signal is applied to the trigger voltage so that it becomes 1/3 of the supply voltage, the timer's internal discharge Tr. turns off, increasing the threshold voltage and driving the timer output again at high.
1. Monostable Operation
Figure 1. Monostable Circuit
flowchart LR
subgraph CIRCUIT["Monostable Configuration"]
VCC["+Vcc"]
subgraph TIMER["555 Timer"]
P4["4<br/>RESET"]
P8["8<br/>Vcc"]
P7["7<br/>DISCH"]
P2["2<br/>TRIG"]
P6["6<br/>THRES"]
P3["3<br/>OUT"]
P5["5<br/>CONT"]
P1["1<br/>GND"]
end
RA["RA"]
C1["C1"]
C2["C2<br/>0.01μF"]
RL["RL"]
GND["GND"]
end
VCC --> P4
VCC --> P8
VCC --> RA
RA --> P7
P7 --> P6
P6 --> C1
C1 --> GND
TRIG_IN["Trigger<br/>Input"] --> P2
P3 --> RL
RL --> OUTPUT["Output"]
P5 --> C2
C2 --> GND
P1 --> GND
style VCC fill:#f00,color:#fff
style GND fill:#000,color:#fff
style TRIG_IN fill:#f96
style OUTPUT fill:#6f6
Component Values:
- RA: Timing resistor (1kΩ to 10MΩ typical)
- C1: Timing capacitor
- C2: Bypass capacitor (0.01μF recommended)
- RL: Load resistor
Time Delay Formula:
t_d = 1.1 \times R_A \times C_1
Figure 2. Resistance and Capacitance vs. Time Delay (td)
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#fff', 'lineColor': '#333'}}}%%
xychart-beta
title "Time Delay vs Capacitance (Log Scale)"
x-axis "Time Delay (seconds)" [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
y-axis "Capacitance (μF)" 0.001 --> 1000
line "R=1kΩ" [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]
line "R=10kΩ" [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
line "R=100kΩ" [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
line "R=1MΩ" [0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10]
| RA | C1 | Time Delay (td) |
|---|---|---|
| 1 kΩ | 0.1 μF | 110 μs |
| 10 kΩ | 0.1 μF | 1.1 ms |
| 100 kΩ | 0.1 μF | 11 ms |
| 1 MΩ | 1 μF | 1.1 s |
| 10 MΩ | 10 μF | 110 s |
Figure 3. Waveforms of Monostable Operation
%%{init: {'theme': 'base'}}%%
gantt
title Monostable Waveforms (Normal Operation)
dateFormat X
axisFormat %s
section Trigger
High (Vcc) :a1, 0, 2
Low (<Vcc/3) :crit, a2, 2, 3
High (Vcc) :a3, 3, 10
section Output
Low (0V) :b1, 0, 2
High (Vcc) :active, b2, 2, 8
Low (0V) :b3, 8, 10
section Threshold (Vc1)
Charging :c1, 2, 8
Trigger ─────┐ ┌─────────────────────
(Pin 2) └─────┘
↓ Trigger pulse
Output ─────────┐ ┌───────────
(Pin 3) └──────────┘
|←── td ───→|
Threshold /‾‾‾‾‾‾‾‾\
(Pin 6) ─────/ \────────────
0V ↗ ↘
Vcc/3 2Vcc/3
td = 1.1 × RA × C1
Figure 1 illustrates a monostable circuit. In this mode, the timer generates a fixed pulse whenever the trigger voltage falls below Vcc/3. When the trigger pulse voltage applied to the #2 pin falls below Vcc/3 while the timer output is low, the timer's internal flip-flop turns the discharging Tr. off and causes the timer output to become high by charging the external capacitor C1 and setting the flip-flop output at the same time. The voltage across the external capacitor C1, VC1 increases exponentially with the time constant t=RAC and reaches 2Vcc/3 at td=1.1RAC. Hence, capacitor C1 is charged through resistor RA. The greater the time constant RAC, the longer it takes for the VC1 to reach 2Vcc/3. In other words, the time constant RAC controls the output pulse width. When the applied voltage to the capacitor C1 reaches 2Vcc/3, the comparator on the trigger terminal resets the flip-flop, turning the discharging Tr. on. At this time, C1 begins to discharge and the timer output converts to low. In this way, the timer operating in the monostable repeats the above process. Figure 2 shows the time constant relationship based on RA and C. Figure 3 shows the general waveforms during the monostable operation. It must be noted that, for a normal operation, the trigger pulse voltage needs to maintain a minimum of Vcc/3 before the timer output turns low. That is, although the output remains unaffected even if a different trigger pulse is applied while the output is high, it may be affected and the waveform does not operate properly if the trigger pulse voltage at the end of the output pulse remains at below Vcc/3. Figure 4 shows such a timer output abnormality.
Figure 4. Waveforms of Monostable Operation (abnormal)
Trigger ─────┐ ┌──┐ ┌─────────────────
(Pin 2) └──┘ └──┘
↓ ↓ Retriggering during output high
Output ─────────┐ ┌─────
(Pin 3) └────────────────┘
|←── extended td ──→|
Threshold /‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾\
(Pin 6) ─────/ \────
0V ↗ ↘
Vcc/3 2Vcc/3
⚠️ ABNORMAL: Trigger held low extends output pulse!
Trigger must return high before output goes low.
Note: For normal operation, the trigger pulse voltage must return above Vcc/3 before the timer output goes low. If the trigger remains below Vcc/3, the output pulse will be extended abnormally.
2. Astable Operation
Figure 5. Astable Circuit
flowchart LR
subgraph CIRCUIT["Astable Configuration"]
VCC["+Vcc"]
subgraph TIMER["555 Timer"]
P4["4<br/>RESET"]
P8["8<br/>Vcc"]
P7["7<br/>DISCH"]
P2["2<br/>TRIG"]
P6["6<br/>THRES"]
P3["3<br/>OUT"]
P5["5<br/>CONT"]
P1["1<br/>GND"]
end
RA["RA"]
RB["RB"]
C1["C1"]
C2["C2<br/>0.01μF"]
GND["GND"]
end
VCC --> P4
VCC --> P8
VCC --> RA
RA --> P7
P7 --> RB
RB --> P6
RB --> P2
P6 --> C1
C1 --> GND
P3 --> OUTPUT["Output"]
P5 --> C2
C2 --> GND
P1 --> GND
MOD["Modulation<br/>(optional)"] -.-> P5
style VCC fill:#f00,color:#fff
style GND fill:#000,color:#fff
style OUTPUT fill:#6f6
style MOD fill:#ff6
Component Values:
- RA: Charge resistor (controls HIGH time)
- RB: Charge/discharge resistor (affects both HIGH and LOW times)
- C1: Timing capacitor
- C2: Bypass capacitor (0.01μF recommended)
Timing Formulas:
- High time:
t_H = 0.693 \times (R_A + R_B) \times C_1 - Low time:
t_L = 0.693 \times R_B \times C_1 - Period:
T = t_H + t_L = 0.693 \times (R_A + 2R_B) \times C_1 - Frequency:
f = \frac{1.44}{(R_A + 2R_B) \times C_1} - Duty Cycle:
D = \frac{R_A + R_B}{R_A + 2R_B}
Figure 6. Capacitance and Resistance vs. Frequency
%%{init: {'theme': 'base'}}%%
xychart-beta
title "Free Running Frequency vs Capacitance"
x-axis "Frequency (Hz)" [0.1, 1, 10, 100, 1000, 10000, 100000]
y-axis "Capacitance (μF)" 0.001 --> 100
| (RA + 2RB) | C1 | Frequency |
|---|---|---|
| 1.44 kΩ | 1 μF | 1 kHz |
| 14.4 kΩ | 1 μF | 100 Hz |
| 144 kΩ | 1 μF | 10 Hz |
| 14.4 kΩ | 0.1 μF | 1 kHz |
| 14.4 kΩ | 0.01 μF | 10 kHz |
Figure 7. Waveforms of Astable Operation
Output ────┐ ┌─────┐ ┌─────┐ ┌────
(Pin 3) └─────┘ └─────┘ └─────┘
|←tL→|←─tH─→|←tL→|←─tH─→|
Threshold /\ /\ /\
(Pin 6) ─────/ \──────/ \──────/ \──────
Vcc/3 2Vcc/3
├────── T ──────┤
T = tH + tL = 0.693(RA + 2RB)C1
Charging: C1 charges through RA + RB
Discharging: C1 discharges through RB only
Typical Values: RA = 1kΩ, RB = 1kΩ, C1 = 1μF, Vcc = 5V
An astable timer operation is achieved by adding resistor RB to Figure 1 and configuring as shown on Figure 5. In the astable operation, the trigger terminal and the threshold terminal are connected so that a self-trigger is formed, operating as a multi vibrator. When the timer output is high, its internal discharging Tr. turns off and the VC1 increases by exponential function with the time constant (RA+RB)*C. When the VC1, or the threshold voltage, reaches 2Vcc/3, the comparator output on the trigger terminal becomes high, resetting the F/F and causing the timer output to become low. This in turn turns on the discharging Tr. and the C1 discharges through the discharging channel formed by RB and the discharging Tr. When the VC1 falls below Vcc/3, the comparator output on the trigger terminal becomes high and the timer output becomes high again. The discharging Tr. turns off and the VC1 rises again. In the above process, the section where the timer output is high is the time it takes for the VC1 to rise from Vcc/3 to 2Vcc/3, and the section where the timer output is low is the time it takes for the VC1 to drop from 2Vcc/3 to Vcc/3. When timer output is high, the equivalent circuit for charging capacitor C1 is as follows:
Equation 1: Charging Circuit Equivalent
flowchart LR
VCC["Vcc"] --> RA_RB["RA + RB"]
RA_RB --> C1["C1<br/>Vc1(0-)=Vcc/3"]
C1 --> GND["GND"]
Charging Equation:
C_1 \frac{dV_{C1}}{dt} = \frac{V_{CC} - V_{(0-)}}{R_A + R_B} \quad (1)
V_{C1}(0^+) = \frac{V_{CC}}{3} \quad (2)
V_{C1}(t) = V_{CC} \left[ 1 - \frac{2}{3} e^{-\frac{t}{(R_A + R_B)C_1}} \right] \quad (3)
Since the duration of the timer output high state (tH) is the amount of time it takes for the VC1(t) to reach 2Vcc/3,
Equation 2: High Time Calculation
\frac{2}{3}V_{CC} = V_{CC} \left[ 1 - \frac{2}{3} e^{-\frac{t_H}{(R_A + R_B)C_1}} \right] \quad (4)
t_H = C_1(R_A + R_B) \ln 2 = 0.693(R_A + R_B)C_1 \quad (5)
The equivalent circuit for discharging capacitor C1, when timer output is low is, as follows:
Equation 3: Discharging Circuit Equivalent
flowchart LR
C1["C1<br/>Vc1(0-)=2Vcc/3"] --> RB["RB"]
RB --> RD["RD<br/>(discharge Tr.)"]
RD --> GND["GND"]
Discharging Equation:
C_1 \frac{dV_{C1}}{dt} + \frac{1}{R_A + R_B} V_{C1} = 0 \quad (6)
V_{C1}(t) = \frac{2}{3} V_{CC} e^{-\frac{t}{(R_A + R_B)C_1}} \quad (7)
Since the duration of the timer output low state (tL) is the amount of time it takes for the VC1(t) to reach Vcc/3,
Equation 4: Low Time Calculation
\frac{1}{3}V_{CC} = \frac{2}{3}V_{CC} e^{-\frac{t_L}{(R_B + R_D)C_1}} \quad (8)
t_L = C_1(R_B + R_D) \ln 2 = 0.693(R_A + R_B)C_1 \quad (9)
Since RD is normally RB>>RD although related to the size of discharging Tr., tL=0.693RBC1 (10) Consequently, if the timer operates in astable, the period is the same with 'T=tH+tL=0.693(RA+RB)C1+0.693RBC1=0.693(RA+2RB)C1' because the period is the sum of the charge time and discharge time. And since frequency is the reciprocal of the period, the following applies.
Equation 5: Frequency Formula
f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C_1} \quad (11)
3. Frequency divider
By adjusting the length of the timing cycle, the basic circuit of Figure 1 can be made to operate as a frequency divider. Figure 8. illustrates a divide-by-three circuit that makes use of the fact that retriggering cannot occur during the timing cycle.
Figure 8. Waveforms of Frequency Divider Operation
Trigger ─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─
(Input) └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘
1 2 3 1 2 3 1 2 3
Output ─┐ ┌──┐ ┌──┐ ┌──────
(÷3) └────────┘ └────────┘ └────────┘
|← skip →| |← skip →| |← skip →|
2,3 2,3 2,3
Threshold /‾‾‾‾\ /‾‾‾‾\ /‾‾‾‾\
(Vc1) ─────/ \──────/ \──────/
RA = 9.1kΩ, RB = 1kΩ, C1 = 0.01μF, Vcc = 5V
⚙️ Divide-by-N: Set timing so output ignores (N-1) trigger pulses
4. Pulse Width Modulation
The timer output waveform may be changed by modulating the control voltage applied to the timer's pin 5 and changing the reference of the timer's internal comparators. Figure 9 illustrates the pulse width modulation circuit. When the continuous trigger pulse train is applied in the monostable mode, the timer output width is modulated according to the signal applied to the control terminal. Sine wave as well as other waveforms may be applied as a signal to the control terminal. Figure 10 shows the example of pulse width modulation waveform.
Figure 9. Circuit for Pulse Width Modulation
flowchart LR
subgraph CIRCUIT["PWM Configuration"]
VCC["+Vcc"]
subgraph TIMER["555 Timer"]
P4["4<br/>RESET"]
P8["8<br/>Vcc"]
P7["7<br/>DISCH"]
P2["2<br/>TRIG"]
P6["6<br/>THRES"]
P3["3<br/>OUT"]
P5["5<br/>CONT"]
P1["1<br/>GND"]
end
RA["RA"]
C1["C1"]
C2["C2"]
GND["GND"]
end
VCC --> P4
VCC --> P8
VCC --> RA
RA --> P7
P7 --> P6
P6 --> C1
C1 --> GND
TRIG_IN["Trigger<br/>Pulse Train"] --> P2
MOD["Modulation<br/>Signal"] --> P5
P5 --> C2
C2 --> GND
P3 --> OUTPUT["PWM<br/>Output"]
P1 --> GND
style VCC fill:#f00,color:#fff
style GND fill:#000,color:#fff
style TRIG_IN fill:#f96
style MOD fill:#ff6
style OUTPUT fill:#6f6
Figure 10. Waveforms of Pulse Width Modulation
Control ╭──────╮ ╭──────╮ ╭──────╮
(Pin 5) │ │ │ │ │ │
───╯ ╰──────╯ ╰──────╯ ╰───
|← Modulation Signal (e.g., Sine) →|
Trigger ─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐
└─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘ └─┘
Output ─┐ ┌─┐ ┌───┐ ┌─┐ ┌─┐ ┌───┐ ┌─
(PWM) └──┘ └───┘ └───┘ └──┘ └───┘ └───┘
|←w1→|←w2─→|←w3──→|
Pulse width varies with control voltage:
- Higher control voltage → Longer pulse width
- Lower control voltage → Shorter pulse width
RA = 3.9kΩ, RB = 1kΩ, RL = 1kΩ, C1 = 0.01μF, Vcc = 5V
5. Pulse Position Modulation
If the modulating signal is applied to the control terminal while the timer is connected for the astable operation as in Figure 11, the timer becomes a pulse position modulator. In the pulse position modulator, the reference of the timer's internal comparators is modulated which in turn modulates the timer output according to the modulation signal applied to the control terminal. Figure 12 illustrates a sine wave for modulation signal and the resulting output pulse position modulation : however, any wave shape could be used.
Figure 11. Circuit for Pulse Position Modulation
flowchart LR
subgraph CIRCUIT["PPM Configuration"]
VCC["+Vcc"]
subgraph TIMER["555 Timer"]
P4["4<br/>RESET"]
P8["8<br/>Vcc"]
P7["7<br/>DISCH"]
P2["2<br/>TRIG"]
P6["6<br/>THRES"]
P3["3<br/>OUT"]
P5["5<br/>CONT"]
P1["1<br/>GND"]
end
RA["RA"]
RB["RB"]
C1["C1"]
GND["GND"]
end
VCC --> P4
VCC --> P8
VCC --> RA
RA --> P7
P7 --> RB
RB --> P6
RB --> P2
P6 --> C1
C1 --> GND
MOD["Modulation<br/>Signal"] --> P5
P3 --> OUTPUT["PPM<br/>Output"]
P1 --> GND
style VCC fill:#f00,color:#fff
style GND fill:#000,color:#fff
style MOD fill:#ff6
style OUTPUT fill:#6f6
Figure 12. Waveforms of Pulse Position Modulation
Control ╭────────────╮ ╭────────────╮
(Pin 5) │ │ │ │
───╯ ╰──────────╯ ╰───
Modulation Signal (Sine Wave)
Threshold /\ /\ /\ /\ /\
(Pin 6) ────/ \──/ \────/ \────/ \──/ \────
Output ─┐ ┌─┐ ┌──┐ ┌────┐ ┌──┐ ┌─┐ ┌─
(PPM) └─┘ └──┘ └────┘ └────┘ └──┘ └─┘
|←t1→|←t2─→|←─t3──→|←t4─→|←t5→|
Pulse spacing varies with control voltage:
- Higher control voltage → Longer period
- Lower control voltage → Shorter period
RA = 1kΩ, RB = 1kΩ, C1 = 1nF, Vcc = 5V
6. Linear Ramp
When the pull-up resistor RA in the monostable circuit shown in Figure 1 is replaced with constant current source, the VC1 increases linearly, generating a linear ramp. Figure 13 shows the linear ramp generating circuit and Figure 14 illustrates the generated linear ramp waveforms.
Figure 13. Circuit for Linear Ramp
flowchart TB
subgraph CIRCUIT["Linear Ramp Generator"]
VCC["+Vcc"]
subgraph CURRENT_SOURCE["Constant Current Source"]
RE["RE"]
Q1["Q1<br/>PNP"]
R1["R1"]
R2["R2"]
end
subgraph TIMER["555 Timer"]
P4["4<br/>RESET"]
P8["8<br/>Vcc"]
P7["7<br/>DISCH"]
P2["2<br/>TRIG"]
P6["6<br/>THRES"]
P3["3<br/>OUT"]
P5["5<br/>CONT"]
P1["1<br/>GND"]
end
C1["C1"]
C2["C2"]
GND["GND"]
end
VCC --> P4
VCC --> P8
VCC --> RE
VCC --> R1
RE --> Q1
R1 --> Q1
Q1 --> R2
R2 --> GND
Q1 -->|Ic| P7
P7 --> P6
P6 --> C1
C1 --> GND
TRIG_IN["Trigger"] --> P2
P3 --> OUTPUT["Output"]
P5 --> C2
C2 --> GND
P1 --> GND
style VCC fill:#f00,color:#fff
style GND fill:#000,color:#fff
style Q1 fill:#fcf,color:#000
style OUTPUT fill:#6f6
Figure 14. Waveforms of Linear Ramp
Trigger ─────┐ ┌───────────────────────────
(Pin 2) └─────┘
↓ Trigger pulse
Output ─────────┐ ┌───────────────
(Pin 3) └──────────────┘
|←──── td ────→|
Threshold ╱ Linear ramp (not exponential)
(Pin 6) ─────╱
0V ↗
Vcc/3 2Vcc/3
Linear ramp: Vc1 = (Ic/C1) × t
Slope S = Ic/C1
R1 = 47kΩ, R2 = 100kΩ, RE = 2.7kΩ, RL = 1kΩ, C1 = 0.01μF, Vcc = 5V
In Figure 13, current source is created by PNP transistor Q1 and resistor R1, R2, and RE.
Equation 6: Current Source Calculation
I_C = \frac{V_{CC} - V_E}{R_E} \quad (12)
Here, VE is:
V_E = V_{BE} + \frac{R_2}{R_1 + R_2} V_{CC} \quad (13)
For example, if Vcc=15V, RE=20kΩ, R1=5kW, R2=10kΩ, and VBE=0.7V, VE=0.7V+10V=10.7V Ic=(15-10.7)/20k=0.215mA
When the trigger starts in a timer configured as shown in Figure 13, the current flowing through capacitor C1 becomes a constant current generated by PNP transistor and resistors. Hence, the VC is a linear ramp function as shown in Figure 14. The gradient S of the linear ramp function is defined as follows:
Equation 7: Ramp Slope
S = \frac{V_{P-P}}{T} \quad (14)
Here the Vp-p is the peak-to-peak voltage. If the electric charge amount accumulated in the capacitor is divided by the capacitance, the VC comes out as follows:
V = Q/C (15)
The above equation divided on both sides by T gives us
Equation 8: Simplified Ramp Slope
\frac{V}{T} = \frac{Q/T}{C} \quad (16)
and may be simplified into the following equation.
S = I/C (17)
In other words, the gradient of the linear ramp function appearing across the capacitor can be obtained by using the constant current flowing through the capacitor. If the constant current flow through the capacitor is 0.215mA and the capacitance is 0.02μF, the gradient of the ramp function at both ends of the capacitor is S = 0.215m/0.022μ = 9.77V/ms.
Mechanical Dimensions
Package
8-DIP (Dual In-line Package)
┌─────────────────────────────────────┐
│ ● │
│ #1 #8 │
│ ┌──┐ ┌──┐ │
│ │ │ │ │ │
│ └──┘ └──┘ │
│ #2 #7 │
│ ┌──┐ 555 TIMER ┌──┐ │
│ │ │ │ │ │
│ └──┘ └──┘ │
│ #3 #6 │
│ ┌──┐ ┌──┐ │
│ │ │ │ │ │
│ └──┘ └──┘ │
│ #4 #5 │
│ ┌──┐ ┌──┐ │
│ │ │ │ │ │
│ └──┘ └──┘ │
└─────────────────────────────────────┘
8-DIP Dimensions (in millimeters):
| Parameter | Min | Nom | Max |
|---|---|---|---|
| Package Length | - | 9.60 | - |
| Package Width | 6.20 | 6.40 | 6.60 |
| Package Height | - | 5.08 | - |
| Lead Pitch | - | 2.54 | - |
| Lead Width | 0.36 | 0.46 | 0.56 |
| Lead Thickness | - | 0.33 | - |
| Lead Length | 2.92 | 3.30 | 3.68 |
| Standoff | 0.51 | - | - |
6.40 ± 0.20
┌────────────────┐
│ │
┌────┤ ├────┐
│ │ │ │ 9.60
│ │ │ │ MAX
│ │ │ │
└────┤ ├────┘
│ │
└────────────────┘
↕ 2.54 (pin pitch)
Side View:
┌────────────────┐
5.08 │ │
MAX └──┬──┬──┬──┬──┬─┘
│ │ │ │ │ 3.30 ± 0.30
│ │ │ │ │ (lead length)
═══╧══╧══╧══╧══╧═══
↕ 0.33 MIN
8-SOP (Small Outline Package)
┌───────────────────────────────┐
│ ● │
│ #1 #8 │
│ ─┐ ┌─ │
│ │ │ │
├───┴───────────────────────┴───┤
│ 555 TIMER │
├───┬───────────────────────┬───┤
│ │ │ │
│ ─┘ └─ │
│ #4 #5 │
└───────────────────────────────┘
8-SOP Dimensions (in millimeters):
| Parameter | Min | Nom | Max |
|---|---|---|---|
| Package Length | 4.72 | 4.92 | 5.12 |
| Package Width | 5.70 | 6.00 | 6.30 |
| Package Height | - | 1.55 | 1.75 |
| Lead Pitch | - | 1.27 | - |
| Lead Width | 0.31 | 0.41 | 0.51 |
| Lead Length (toe) | 0.40 | 0.80 | 1.27 |
| Standoff | 0.05 | 0.15 | 0.25 |
| Overall Width (with leads) | - | 6.00 | - |
6.00 ± 0.30
┌────────────────┐
─┐ │ │ ┌─
│ │ │ │ 4.92 ± 0.20
─┘ │ │ └─
└────────────────┘
↕ 1.27 (pin pitch)
Side View:
1.55 ± 0.20
┌────────────────┐
MAX │ │
└──┬──┬──┬──┬──┬─┘
└──┴──┴──┴──┴── 0.10~0.25 standoff
Pin Assignment Summary
| Pin | Symbol | 8-DIP | 8-SOP | Description |
|---|---|---|---|---|
| 1 | GND | ● | ● | Ground (0V) |
| 2 | TRIG | ● | ● | Trigger input |
| 3 | OUT | ● | ● | Output |
| 4 | RESET | ● | ● | Reset (active low) |
| 5 | CONT | ● | ● | Control voltage |
| 6 | THRES | ● | ● | Threshold input |
| 7 | DISCH | ● | ● | Discharge |
| 8 | Vcc | ● | ● | Supply voltage |