# Ralph Loop: Autonomous AI Task Loops Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window. > **Runnable example:** [recipe/ralph_loop.py](recipe/ralph_loop.py) > > From the repository root, install dependencies and run: > > ```bash > pip install -r cookbook/copilot-sdk/python/recipe/requirements.txt > python cookbook/copilot-sdk/python/recipe/ralph_loop.py > ``` > > Make sure `PROMPT_build.md` and `PROMPT_plan.md` exist in your current working directory before running the loop. ## What is a Ralph Loop? A [Ralph loop](https://ghuntley.com/ralph/) is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: **state lives on disk, not in the model's context**. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits. ``` ┌─────────────────────────────────────────────────┐ │ loop.sh │ │ while true: │ │ ┌─────────────────────────────────────────┐ │ │ │ Fresh session (isolated context) │ │ │ │ │ │ │ │ 1. Read PROMPT.md + AGENTS.md │ │ │ │ 2. Study specs/* and code │ │ │ │ 3. Pick next task from plan │ │ │ │ 4. Implement + run tests │ │ │ │ 5. Update plan, commit, exit │ │ │ └─────────────────────────────────────────┘ │ │ ↻ next iteration (fresh context) │ └─────────────────────────────────────────────────┘ ``` **Core principles:** - **Fresh context per iteration**: Each loop creates a new session — no context accumulation, always in the "smart zone" - **Disk as shared state**: `IMPLEMENTATION_PLAN.md` persists between iterations and acts as the coordination mechanism - **Backpressure steers quality**: Tests, builds, and lints reject bad work — the agent must fix issues before committing - **Two modes**: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan) ## Simple Version The minimal Ralph loop — the SDK equivalent of `while :; do cat PROMPT.md | copilot ; done`: ```python import asyncio from pathlib import Path from copilot import CopilotClient, MessageOptions, SessionConfig async def ralph_loop(prompt_file: str, max_iterations: int = 50): client = CopilotClient() await client.start() try: prompt = Path(prompt_file).read_text() for i in range(1, max_iterations + 1): print(f"\n=== Iteration {i}/{max_iterations} ===") # Fresh session each iteration — context isolation is the point session = await client.create_session( SessionConfig(model="gpt-5.1-codex-mini") ) try: await session.send_and_wait( MessageOptions(prompt=prompt), timeout=600 ) finally: await session.destroy() print(f"Iteration {i} complete.") finally: await client.stop() # Usage: point at your PROMPT.md asyncio.run(ralph_loop("PROMPT.md", 20)) ``` This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate. ## Ideal Version The full Ralph pattern with planning and building modes, matching the [Ralph Playbook](https://github.com/ClaytonFarr/ralph-playbook) architecture: ```python import asyncio import sys from pathlib import Path from copilot import CopilotClient, MessageOptions, SessionConfig async def ralph_loop(mode: str = "build", max_iterations: int = 50): prompt_file = "PROMPT_plan.md" if mode == "plan" else "PROMPT_build.md" client = CopilotClient() await client.start() print("━" * 40) print(f"Mode: {mode}") print(f"Prompt: {prompt_file}") print(f"Max: {max_iterations} iterations") print("━" * 40) try: prompt = Path(prompt_file).read_text() for i in range(1, max_iterations + 1): print(f"\n=== Iteration {i}/{max_iterations} ===") session = await client.create_session(SessionConfig( model="gpt-5.1-codex-mini", # Pin the agent to the project directory working_directory=str(Path.cwd()), # Auto-approve tool calls for unattended operation on_permission_request=lambda _req, _ctx: { "kind": "approved", "rules": [] }, )) # Log tool usage for visibility def log_tool_event(event): if event.type.value == "tool.execution_start": print(f" ⚙ {event.data.tool_name}") session.on(log_tool_event) try: await session.send_and_wait( MessageOptions(prompt=prompt), timeout=600 ) finally: await session.destroy() print(f"\nIteration {i} complete.") print(f"\nReached max iterations: {max_iterations}") finally: await client.stop() if __name__ == "__main__": args = sys.argv[1:] mode = "plan" if "plan" in args else "build" max_iter = next((int(a) for a in args if a.isdigit()), 50) asyncio.run(ralph_loop(mode, max_iter)) ``` ### Required Project Files The ideal version expects this file structure in your project: ``` project-root/ ├── PROMPT_plan.md # Planning mode instructions ├── PROMPT_build.md # Building mode instructions ├── AGENTS.md # Operational guide (build/test commands) ├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode) ├── specs/ # Requirement specs (one per topic) │ ├── auth.md │ └── data-pipeline.md └── src/ # Your source code ``` ### Example `PROMPT_plan.md` ```markdown 0a. Study `specs/*` to learn the application specifications. 0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far. 0c. Study `src/` to understand existing code and shared utilities. 1. Compare specs against code (gap analysis). Create or update IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks yet to be implemented. Do NOT implement anything. IMPORTANT: Do NOT assume functionality is missing — search the codebase first to confirm. Prefer updating existing utilities over creating ad-hoc copies. ``` ### Example `PROMPT_build.md` ```markdown 0a. Study `specs/*` to learn the application specifications. 0b. Study IMPLEMENTATION_PLAN.md. 0c. Study `src/` for reference. 1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before making changes, search the codebase (don't assume not implemented). 2. After implementing, run the tests. If functionality is missing, add it. 3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately. 4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A` then `git commit` with a descriptive message. 5. When authoring documentation, capture the why. 6. Implement completely. No placeholders or stubs. 7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it. ``` ### Example `AGENTS.md` Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context. ```markdown ## Build & Run python -m pytest ## Validation - Tests: `pytest` - Typecheck: `mypy src/` - Lint: `ruff check src/` ``` ## Best Practices 1. **Fresh context per iteration**: Never accumulate context across iterations — that's the whole point 2. **Disk is your database**: `IMPLEMENTATION_PLAN.md` is shared state between isolated sessions 3. **Backpressure is essential**: Tests, builds, lints in `AGENTS.md` — the agent must pass them before committing 4. **Start with PLANNING mode**: Generate the plan first, then switch to BUILDING 5. **Observe and tune**: Watch early iterations, add guardrails to prompts when the agent fails in specific ways 6. **The plan is disposable**: If the agent goes off track, delete `IMPLEMENTATION_PLAN.md` and re-plan 7. **Keep `AGENTS.md` brief**: It's loaded every iteration — operational info only, no progress notes 8. **Use a sandbox**: The agent runs autonomously with full tool access — isolate it 9. **Set `working_directory`**: Pin the session to your project root so tool operations resolve paths correctly 10. **Auto-approve permissions**: Use `on_permission_request` to allow tool calls without interrupting the loop ## When to Use a Ralph Loop **Good for:** - Implementing features from specs with test-driven validation - Large refactors broken into many small tasks - Unattended, long-running development with clear requirements - Any work where backpressure (tests/builds) can verify correctness **Not good for:** - Tasks requiring human judgment mid-loop - One-shot operations that don't benefit from iteration - Vague requirements without testable acceptance criteria - Exploratory prototyping where direction isn't clear ## See Also - [Error Handling](error-handling.md) — timeout patterns and graceful shutdown for long-running sessions - [Persisting Sessions](persisting-sessions.md) — save and resume sessions across restarts