# Ralph Loop: Autonomous AI Task Loops Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window. > **Runnable example:** [recipe/ralph-loop.ts](recipe/ralph-loop.ts) > > ```bash > npm install > npx tsx recipe/ralph-loop.ts > ``` ## What is a Ralph Loop? A [Ralph loop](https://ghuntley.com/ralph/) is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: **state lives on disk, not in the model's context**. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits. ``` ┌─────────────────────────────────────────────────┐ │ loop.sh │ │ while true: │ │ ┌─────────────────────────────────────────┐ │ │ │ Fresh session (isolated context) │ │ │ │ │ │ │ │ 1. Read PROMPT.md + AGENTS.md │ │ │ │ 2. Study specs/* and code │ │ │ │ 3. Pick next task from plan │ │ │ │ 4. Implement + run tests │ │ │ │ 5. Update plan, commit, exit │ │ │ └─────────────────────────────────────────┘ │ │ ↻ next iteration (fresh context) │ └─────────────────────────────────────────────────┘ ``` **Core principles:** - **Fresh context per iteration**: Each loop creates a new session — no context accumulation, always in the "smart zone" - **Disk as shared state**: `IMPLEMENTATION_PLAN.md` persists between iterations and acts as the coordination mechanism - **Backpressure steers quality**: Tests, builds, and lints reject bad work — the agent must fix issues before committing - **Two modes**: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan) ## Simple Version The minimal Ralph loop — the SDK equivalent of `while :; do cat PROMPT.md | copilot ; done`: ```typescript import { readFile } from "fs/promises"; import { CopilotClient } from "@github/copilot-sdk"; async function ralphLoop(promptFile: string, maxIterations: number = 50) { const client = new CopilotClient(); await client.start(); try { const prompt = await readFile(promptFile, "utf-8"); for (let i = 1; i <= maxIterations; i++) { console.log(`\n=== Iteration ${i}/${maxIterations} ===`); // Fresh session each iteration — context isolation is the point const session = await client.createSession({ model: "gpt-5.1-codex-mini" }); try { await session.sendAndWait({ prompt }, 600_000); } finally { await session.destroy(); } console.log(`Iteration ${i} complete.`); } } finally { await client.stop(); } } // Usage: point at your PROMPT.md ralphLoop("PROMPT.md", 20); ``` This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate. ## Ideal Version The full Ralph pattern with planning and building modes, matching the [Ralph Playbook](https://github.com/ClaytonFarr/ralph-playbook) architecture: ```typescript import { readFile } from "fs/promises"; import { CopilotClient } from "@github/copilot-sdk"; type Mode = "plan" | "build"; async function ralphLoop(mode: Mode, maxIterations: number = 50) { const promptFile = mode === "plan" ? "PROMPT_plan.md" : "PROMPT_build.md"; const client = new CopilotClient(); await client.start(); console.log(`Mode: ${mode} | Prompt: ${promptFile}`); try { const prompt = await readFile(promptFile, "utf-8"); for (let i = 1; i <= maxIterations; i++) { console.log(`\n=== Iteration ${i}/${maxIterations} ===`); const session = await client.createSession({ model: "gpt-5.1-codex-mini", // Pin the agent to the project directory workingDirectory: process.cwd(), // Auto-approve tool calls for unattended operation onPermissionRequest: async () => ({ allow: true }), }); // Log tool usage for visibility session.on((event) => { if (event.type === "tool.execution_start") { console.log(` ⚙ ${event.data.toolName}`); } }); try { await session.sendAndWait({ prompt }, 600_000); } finally { await session.destroy(); } console.log(`Iteration ${i} complete.`); } } finally { await client.stop(); } } // Parse CLI args: npx tsx ralph-loop.ts [plan] [max_iterations] const args = process.argv.slice(2); const mode: Mode = args.includes("plan") ? "plan" : "build"; const maxArg = args.find((a) => /^\d+$/.test(a)); const maxIterations = maxArg ? parseInt(maxArg) : 50; ralphLoop(mode, maxIterations); ``` ### Required Project Files The ideal version expects this file structure in your project: ``` project-root/ ├── PROMPT_plan.md # Planning mode instructions ├── PROMPT_build.md # Building mode instructions ├── AGENTS.md # Operational guide (build/test commands) ├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode) ├── specs/ # Requirement specs (one per topic) │ ├── auth.md │ └── data-pipeline.md └── src/ # Your source code ``` ### Example `PROMPT_plan.md` ```markdown 0a. Study `specs/*` to learn the application specifications. 0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far. 0c. Study `src/` to understand existing code and shared utilities. 1. Compare specs against code (gap analysis). Create or update IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks yet to be implemented. Do NOT implement anything. IMPORTANT: Do NOT assume functionality is missing — search the codebase first to confirm. Prefer updating existing utilities over creating ad-hoc copies. ``` ### Example `PROMPT_build.md` ```markdown 0a. Study `specs/*` to learn the application specifications. 0b. Study IMPLEMENTATION_PLAN.md. 0c. Study `src/` for reference. 1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before making changes, search the codebase (don't assume not implemented). 2. After implementing, run the tests. If functionality is missing, add it. 3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately. 4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A` then `git commit` with a descriptive message. 5. When authoring documentation, capture the why. 6. Implement completely. No placeholders or stubs. 7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it. ``` ### Example `AGENTS.md` Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context. ```markdown ## Build & Run npm run build ## Validation - Tests: `npm test` - Typecheck: `npx tsc --noEmit` - Lint: `npm run lint` ``` ## Best Practices 1. **Fresh context per iteration**: Never accumulate context across iterations — that's the whole point 2. **Disk is your database**: `IMPLEMENTATION_PLAN.md` is shared state between isolated sessions 3. **Backpressure is essential**: Tests, builds, lints in `AGENTS.md` — the agent must pass them before committing 4. **Start with PLANNING mode**: Generate the plan first, then switch to BUILDING 5. **Observe and tune**: Watch early iterations, add guardrails to prompts when the agent fails in specific ways 6. **The plan is disposable**: If the agent goes off track, delete `IMPLEMENTATION_PLAN.md` and re-plan 7. **Keep `AGENTS.md` brief**: It's loaded every iteration — operational info only, no progress notes 8. **Use a sandbox**: The agent runs autonomously with full tool access — isolate it 9. **Set `workingDirectory`**: Pin the session to your project root so tool operations resolve paths correctly 10. **Auto-approve permissions**: Use `onPermissionRequest` to allow tool calls without interrupting the loop ## When to Use a Ralph Loop **Good for:** - Implementing features from specs with test-driven validation - Large refactors broken into many small tasks - Unattended, long-running development with clear requirements - Any work where backpressure (tests/builds) can verify correctness **Not good for:** - Tasks requiring human judgment mid-loop - One-shot operations that don't benefit from iteration - Vague requirements without testable acceptance criteria - Exploratory prototyping where direction isn't clear ## See Also - [Error Handling](error-handling.md) — timeout patterns and graceful shutdown for long-running sessions - [Persisting Sessions](persisting-sessions.md) — save and resume sessions across restarts