feat: add agent-governance skill

Add governance patterns and techniques for AI agent systems:
- Policy definition with allowlists, blocklists, and content filters
- Semantic intent classification for threat detection
- Tool-level governance decorator pattern
- Trust scoring with temporal decay for multi-agent systems
- Append-only audit trail design
- Framework integration examples (PydanticAI, CrewAI, OpenAI Agents)

Co-authored-by: Copilot <223556219+Copilot@users.noreply.github.com>
This commit is contained in:
Imran Siddique
2026-02-18 13:28:25 -08:00
parent 8480453512
commit dcfae78fa4
2 changed files with 565 additions and 0 deletions

View File

@@ -22,6 +22,7 @@ Skills differ from other primitives by supporting bundled assets (scripts, code
| Name | Description | Bundled Assets | | Name | Description | Bundled Assets |
| ---- | ----------- | -------------- | | ---- | ----------- | -------------- |
| [agent-governance](../skills/agent-governance/SKILL.md) | Patterns and techniques for adding governance, safety, and trust controls to AI agent systems. Use this skill when:<br />- Building AI agents that call external tools (APIs, databases, file systems)<br />- Implementing policy-based access controls for agent tool usage<br />- Adding semantic intent classification to detect dangerous prompts<br />- Creating trust scoring systems for multi-agent workflows<br />- Building audit trails for agent actions and decisions<br />- Enforcing rate limits, content filters, or tool restrictions on agents<br />- Working with any agent framework (PydanticAI, CrewAI, OpenAI Agents, LangChain, AutoGen) | None |
| [agentic-eval](../skills/agentic-eval/SKILL.md) | Patterns and techniques for evaluating and improving AI agent outputs. Use this skill when:<br />- Implementing self-critique and reflection loops<br />- Building evaluator-optimizer pipelines for quality-critical generation<br />- Creating test-driven code refinement workflows<br />- Designing rubric-based or LLM-as-judge evaluation systems<br />- Adding iterative improvement to agent outputs (code, reports, analysis)<br />- Measuring and improving agent response quality | None | | [agentic-eval](../skills/agentic-eval/SKILL.md) | Patterns and techniques for evaluating and improving AI agent outputs. Use this skill when:<br />- Implementing self-critique and reflection loops<br />- Building evaluator-optimizer pipelines for quality-critical generation<br />- Creating test-driven code refinement workflows<br />- Designing rubric-based or LLM-as-judge evaluation systems<br />- Adding iterative improvement to agent outputs (code, reports, analysis)<br />- Measuring and improving agent response quality | None |
| [appinsights-instrumentation](../skills/appinsights-instrumentation/SKILL.md) | Instrument a webapp to send useful telemetry data to Azure App Insights | `LICENSE.txt`<br />`examples/appinsights.bicep`<br />`references/ASPNETCORE.md`<br />`references/AUTO.md`<br />`references/NODEJS.md`<br />`references/PYTHON.md`<br />`scripts/appinsights.ps1` | | [appinsights-instrumentation](../skills/appinsights-instrumentation/SKILL.md) | Instrument a webapp to send useful telemetry data to Azure App Insights | `LICENSE.txt`<br />`examples/appinsights.bicep`<br />`references/ASPNETCORE.md`<br />`references/AUTO.md`<br />`references/NODEJS.md`<br />`references/PYTHON.md`<br />`scripts/appinsights.ps1` |
| [aspire](../skills/aspire/SKILL.md) | Aspire skill covering the Aspire CLI, AppHost orchestration, service discovery, integrations, MCP server, VS Code extension, Dev Containers, GitHub Codespaces, templates, dashboard, and deployment. Use when the user asks to create, run, debug, configure, deploy, or troubleshoot an Aspire distributed application. | `references/architecture.md`<br />`references/cli-reference.md`<br />`references/dashboard.md`<br />`references/deployment.md`<br />`references/integrations-catalog.md`<br />`references/mcp-server.md`<br />`references/polyglot-apis.md`<br />`references/testing.md`<br />`references/troubleshooting.md` | | [aspire](../skills/aspire/SKILL.md) | Aspire skill covering the Aspire CLI, AppHost orchestration, service discovery, integrations, MCP server, VS Code extension, Dev Containers, GitHub Codespaces, templates, dashboard, and deployment. Use when the user asks to create, run, debug, configure, deploy, or troubleshoot an Aspire distributed application. | `references/architecture.md`<br />`references/cli-reference.md`<br />`references/dashboard.md`<br />`references/deployment.md`<br />`references/integrations-catalog.md`<br />`references/mcp-server.md`<br />`references/polyglot-apis.md`<br />`references/testing.md`<br />`references/troubleshooting.md` |

View File

@@ -0,0 +1,564 @@
---
name: agent-governance
description: |
Patterns and techniques for adding governance, safety, and trust controls to AI agent systems. Use this skill when:
- Building AI agents that call external tools (APIs, databases, file systems)
- Implementing policy-based access controls for agent tool usage
- Adding semantic intent classification to detect dangerous prompts
- Creating trust scoring systems for multi-agent workflows
- Building audit trails for agent actions and decisions
- Enforcing rate limits, content filters, or tool restrictions on agents
- Working with any agent framework (PydanticAI, CrewAI, OpenAI Agents, LangChain, AutoGen)
---
# Agent Governance Patterns
Patterns for adding safety, trust, and policy enforcement to AI agent systems.
## Overview
Governance patterns ensure AI agents operate within defined boundaries — controlling which tools they can call, what content they can process, how much they can do, and maintaining accountability through audit trails.
```
User Request → Intent Classification → Policy Check → Tool Execution → Audit Log
↓ ↓ ↓
Threat Detection Allow/Deny Trust Update
```
## When to Use
- **Agents with tool access**: Any agent that calls external tools (APIs, databases, shell commands)
- **Multi-agent systems**: Agents delegating to other agents need trust boundaries
- **Production deployments**: Compliance, audit, and safety requirements
- **Sensitive operations**: Financial transactions, data access, infrastructure management
---
## Pattern 1: Governance Policy
Define what an agent is allowed to do as a composable, serializable policy object.
```python
from dataclasses import dataclass, field
from enum import Enum
from typing import Optional
import re
class PolicyAction(Enum):
ALLOW = "allow"
DENY = "deny"
REVIEW = "review" # flag for human review
@dataclass
class GovernancePolicy:
"""Declarative policy controlling agent behavior."""
name: str
allowed_tools: list[str] = field(default_factory=list) # whitelist
blocked_tools: list[str] = field(default_factory=list) # blacklist
blocked_patterns: list[str] = field(default_factory=list) # content filters
max_calls_per_request: int = 100 # rate limit
require_human_approval: list[str] = field(default_factory=list) # tools needing approval
def check_tool(self, tool_name: str) -> PolicyAction:
"""Check if a tool is allowed by this policy."""
if tool_name in self.blocked_tools:
return PolicyAction.DENY
if tool_name in self.require_human_approval:
return PolicyAction.REVIEW
if self.allowed_tools and tool_name not in self.allowed_tools:
return PolicyAction.DENY
return PolicyAction.ALLOW
def check_content(self, content: str) -> Optional[str]:
"""Check content against blocked patterns. Returns matched pattern or None."""
for pattern in self.blocked_patterns:
if re.search(pattern, content, re.IGNORECASE):
return pattern
return None
```
### Policy Composition
Combine multiple policies (e.g., org-wide + team + agent-specific):
```python
def compose_policies(*policies: GovernancePolicy) -> GovernancePolicy:
"""Merge policies with most-restrictive-wins semantics."""
combined = GovernancePolicy(name="composed")
for policy in policies:
combined.blocked_tools.extend(policy.blocked_tools)
combined.blocked_patterns.extend(policy.blocked_patterns)
combined.require_human_approval.extend(policy.require_human_approval)
combined.max_calls_per_request = min(
combined.max_calls_per_request,
policy.max_calls_per_request
)
if policy.allowed_tools:
if combined.allowed_tools:
combined.allowed_tools = [
t for t in combined.allowed_tools if t in policy.allowed_tools
]
else:
combined.allowed_tools = list(policy.allowed_tools)
return combined
# Usage: layer policies from broad to specific
org_policy = GovernancePolicy(
name="org-wide",
blocked_tools=["shell_exec", "delete_database"],
blocked_patterns=[r"(?i)(api[_-]?key|secret|password)\s*[:=]"],
max_calls_per_request=50
)
team_policy = GovernancePolicy(
name="data-team",
allowed_tools=["query_db", "read_file", "write_report"],
require_human_approval=["write_report"]
)
agent_policy = compose_policies(org_policy, team_policy)
```
### Policy as YAML
Store policies as configuration, not code:
```yaml
# governance-policy.yaml
name: production-agent
allowed_tools:
- search_documents
- query_database
- send_email
blocked_tools:
- shell_exec
- delete_record
blocked_patterns:
- "(?i)(api[_-]?key|secret|password)\\s*[:=]"
- "(?i)(drop|truncate|delete from)\\s+\\w+"
max_calls_per_request: 25
require_human_approval:
- send_email
```
```python
import yaml
def load_policy(path: str) -> GovernancePolicy:
with open(path) as f:
data = yaml.safe_load(f)
return GovernancePolicy(**data)
```
---
## Pattern 2: Semantic Intent Classification
Detect dangerous intent in prompts before they reach the agent, using pattern-based signals.
```python
from dataclasses import dataclass
@dataclass
class IntentSignal:
category: str # e.g., "data_exfiltration", "privilege_escalation"
confidence: float # 0.0 to 1.0
evidence: str # what triggered the detection
# Weighted signal patterns for threat detection
THREAT_SIGNALS = [
# Data exfiltration
(r"(?i)send\s+(all|every|entire)\s+\w+\s+to\s+", "data_exfiltration", 0.8),
(r"(?i)export\s+.*\s+to\s+(external|outside|third.?party)", "data_exfiltration", 0.9),
(r"(?i)curl\s+.*\s+-d\s+", "data_exfiltration", 0.7),
# Privilege escalation
(r"(?i)(sudo|as\s+root|admin\s+access)", "privilege_escalation", 0.8),
(r"(?i)chmod\s+777", "privilege_escalation", 0.9),
# System modification
(r"(?i)(rm\s+-rf|del\s+/[sq]|format\s+c:)", "system_destruction", 0.95),
(r"(?i)(drop\s+database|truncate\s+table)", "system_destruction", 0.9),
# Prompt injection
(r"(?i)ignore\s+(previous|above|all)\s+(instructions?|rules?)", "prompt_injection", 0.9),
(r"(?i)you\s+are\s+now\s+(a|an)\s+", "prompt_injection", 0.7),
]
def classify_intent(content: str) -> list[IntentSignal]:
"""Classify content for threat signals."""
signals = []
for pattern, category, weight in THREAT_SIGNALS:
match = re.search(pattern, content)
if match:
signals.append(IntentSignal(
category=category,
confidence=weight,
evidence=match.group()
))
return signals
def is_safe(content: str, threshold: float = 0.7) -> bool:
"""Quick check: is the content safe above the given threshold?"""
signals = classify_intent(content)
return not any(s.confidence >= threshold for s in signals)
```
**Key insight**: Intent classification happens *before* tool execution, acting as a pre-flight safety check. This is fundamentally different from output guardrails which only check *after* generation.
---
## Pattern 3: Tool-Level Governance Decorator
Wrap individual tool functions with governance checks:
```python
import functools
import time
from collections import defaultdict
_call_counters: dict[str, int] = defaultdict(int)
def govern(policy: GovernancePolicy, audit_trail=None):
"""Decorator that enforces governance policy on a tool function."""
def decorator(func):
@functools.wraps(func)
async def wrapper(*args, **kwargs):
tool_name = func.__name__
# 1. Check tool allowlist/blocklist
action = policy.check_tool(tool_name)
if action == PolicyAction.DENY:
raise PermissionError(f"Policy '{policy.name}' blocks tool '{tool_name}'")
if action == PolicyAction.REVIEW:
raise PermissionError(f"Tool '{tool_name}' requires human approval")
# 2. Check rate limit
_call_counters[policy.name] += 1
if _call_counters[policy.name] > policy.max_calls_per_request:
raise PermissionError(f"Rate limit exceeded: {policy.max_calls_per_request} calls")
# 3. Check content in arguments
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, str):
matched = policy.check_content(arg)
if matched:
raise PermissionError(f"Blocked pattern detected: {matched}")
# 4. Execute and audit
start = time.monotonic()
try:
result = await func(*args, **kwargs)
if audit_trail is not None:
audit_trail.append({
"tool": tool_name,
"action": "allowed",
"duration_ms": (time.monotonic() - start) * 1000,
"timestamp": time.time()
})
return result
except Exception as e:
if audit_trail is not None:
audit_trail.append({
"tool": tool_name,
"action": "error",
"error": str(e),
"timestamp": time.time()
})
raise
return wrapper
return decorator
# Usage with any agent framework
audit_log = []
policy = GovernancePolicy(
name="search-agent",
allowed_tools=["search", "summarize"],
blocked_patterns=[r"(?i)password"],
max_calls_per_request=10
)
@govern(policy, audit_trail=audit_log)
async def search(query: str) -> str:
"""Search documents — governed by policy."""
return f"Results for: {query}"
# Passes: search("latest quarterly report")
# Blocked: search("show me the admin password")
```
---
## Pattern 4: Trust Scoring
Track agent reliability over time with decay-based trust scores:
```python
from dataclasses import dataclass, field
import math
import time
@dataclass
class TrustScore:
"""Trust score with temporal decay."""
score: float = 0.5 # 0.0 (untrusted) to 1.0 (fully trusted)
successes: int = 0
failures: int = 0
last_updated: float = field(default_factory=time.time)
def record_success(self, reward: float = 0.05):
self.successes += 1
self.score = min(1.0, self.score + reward * (1 - self.score))
self.last_updated = time.time()
def record_failure(self, penalty: float = 0.15):
self.failures += 1
self.score = max(0.0, self.score - penalty * self.score)
self.last_updated = time.time()
def current(self, decay_rate: float = 0.001) -> float:
"""Get score with temporal decay — trust erodes without activity."""
elapsed = time.time() - self.last_updated
decay = math.exp(-decay_rate * elapsed)
return self.score * decay
@property
def reliability(self) -> float:
total = self.successes + self.failures
return self.successes / total if total > 0 else 0.0
# Usage in multi-agent systems
trust = TrustScore()
# Agent completes tasks successfully
trust.record_success() # 0.525
trust.record_success() # 0.549
# Agent makes an error
trust.record_failure() # 0.467
# Gate sensitive operations on trust
if trust.current() >= 0.7:
# Allow autonomous operation
pass
elif trust.current() >= 0.4:
# Allow with human oversight
pass
else:
# Deny or require explicit approval
pass
```
**Multi-agent trust**: In systems where agents delegate to other agents, each agent maintains trust scores for its delegates:
```python
class AgentTrustRegistry:
def __init__(self):
self.scores: dict[str, TrustScore] = {}
def get_trust(self, agent_id: str) -> TrustScore:
if agent_id not in self.scores:
self.scores[agent_id] = TrustScore()
return self.scores[agent_id]
def most_trusted(self, agents: list[str]) -> str:
return max(agents, key=lambda a: self.get_trust(a).current())
def meets_threshold(self, agent_id: str, threshold: float) -> bool:
return self.get_trust(agent_id).current() >= threshold
```
---
## Pattern 5: Audit Trail
Append-only audit log for all agent actions — critical for compliance and debugging:
```python
from dataclasses import dataclass, field
import json
import time
@dataclass
class AuditEntry:
timestamp: float
agent_id: str
tool_name: str
action: str # "allowed", "denied", "error"
policy_name: str
details: dict = field(default_factory=dict)
class AuditTrail:
"""Append-only audit trail for agent governance events."""
def __init__(self):
self._entries: list[AuditEntry] = []
def log(self, agent_id: str, tool_name: str, action: str,
policy_name: str, **details):
self._entries.append(AuditEntry(
timestamp=time.time(),
agent_id=agent_id,
tool_name=tool_name,
action=action,
policy_name=policy_name,
details=details
))
def denied(self) -> list[AuditEntry]:
"""Get all denied actions — useful for security review."""
return [e for e in self._entries if e.action == "denied"]
def by_agent(self, agent_id: str) -> list[AuditEntry]:
return [e for e in self._entries if e.agent_id == agent_id]
def export_jsonl(self, path: str):
"""Export as JSON Lines for log aggregation systems."""
with open(path, "w") as f:
for entry in self._entries:
f.write(json.dumps({
"timestamp": entry.timestamp,
"agent_id": entry.agent_id,
"tool": entry.tool_name,
"action": entry.action,
"policy": entry.policy_name,
**entry.details
}) + "\n")
```
---
## Pattern 6: Framework Integration
### PydanticAI
```python
from pydantic_ai import Agent
policy = GovernancePolicy(
name="support-bot",
allowed_tools=["search_docs", "create_ticket"],
blocked_patterns=[r"(?i)(ssn|social\s+security|credit\s+card)"],
max_calls_per_request=20
)
agent = Agent("openai:gpt-4o", system_prompt="You are a support assistant.")
@agent.tool
@govern(policy)
async def search_docs(ctx, query: str) -> str:
"""Search knowledge base — governed."""
return await kb.search(query)
@agent.tool
@govern(policy)
async def create_ticket(ctx, title: str, body: str) -> str:
"""Create support ticket — governed."""
return await tickets.create(title=title, body=body)
```
### CrewAI
```python
from crewai import Agent, Task, Crew
policy = GovernancePolicy(
name="research-crew",
allowed_tools=["search", "analyze"],
max_calls_per_request=30
)
# Apply governance at the crew level
def governed_crew_run(crew: Crew, policy: GovernancePolicy):
"""Wrap crew execution with governance checks."""
audit = AuditTrail()
for agent in crew.agents:
for tool in agent.tools:
original = tool.func
tool.func = govern(policy, audit_trail=audit._entries)(original)
result = crew.kickoff()
return result, audit
```
### OpenAI Agents SDK
```python
from agents import Agent, function_tool
policy = GovernancePolicy(
name="coding-agent",
allowed_tools=["read_file", "write_file", "run_tests"],
blocked_tools=["shell_exec"],
max_calls_per_request=50
)
@function_tool
@govern(policy)
async def read_file(path: str) -> str:
"""Read file contents — governed."""
return open(path).read()
```
---
## Governance Levels
Match governance strictness to risk level:
| Level | Controls | Use Case |
|-------|----------|----------|
| **Open** | Audit only, no restrictions | Internal dev/testing |
| **Standard** | Tool allowlist + content filters | General production agents |
| **Strict** | All controls + human approval for sensitive ops | Financial, healthcare, legal |
| **Locked** | Allowlist only, no dynamic tools, full audit | Compliance-critical systems |
---
## Best Practices
| Practice | Rationale |
|----------|-----------|
| **Policy as configuration** | Store policies in YAML/JSON, not hardcoded — enables change without deploys |
| **Most-restrictive-wins** | When composing policies, deny always overrides allow |
| **Pre-flight intent check** | Classify intent *before* tool execution, not after |
| **Trust decay** | Trust scores should decay over time — require ongoing good behavior |
| **Append-only audit** | Never modify or delete audit entries — immutability enables compliance |
| **Fail closed** | If governance check errors, deny the action rather than allowing it |
| **Separate policy from logic** | Governance enforcement should be independent of agent business logic |
---
## Quick Start Checklist
```markdown
## Agent Governance Implementation Checklist
### Setup
- [ ] Define governance policy (allowed tools, blocked patterns, rate limits)
- [ ] Choose governance level (open/standard/strict/locked)
- [ ] Set up audit trail storage
### Implementation
- [ ] Add @govern decorator to all tool functions
- [ ] Add intent classification to user input processing
- [ ] Implement trust scoring for multi-agent interactions
- [ ] Wire up audit trail export
### Validation
- [ ] Test that blocked tools are properly denied
- [ ] Test that content filters catch sensitive patterns
- [ ] Test rate limiting behavior
- [ ] Verify audit trail captures all events
- [ ] Test policy composition (most-restrictive-wins)
```
---
## Related Resources
- [Agent-OS Governance Engine](https://github.com/imran-siddique/agent-os) — Full governance framework
- [AgentMesh Integrations](https://github.com/imran-siddique/agentmesh-integrations) — Framework-specific packages
- [OWASP Top 10 for LLM Applications](https://owasp.org/www-project-top-10-for-large-language-model-applications/)