mirror of
https://github.com/github/awesome-copilot.git
synced 2026-02-20 02:15:12 +00:00
Rewrite Ralph loop recipes: split into simple vs ideal versions
Align all 4 language recipes (Node.js, Python, .NET, Go) with the Ralph Playbook architecture: - Simple version: minimal outer loop with fresh session per iteration - Ideal version: planning/building modes, backpressure, git integration - Fresh context isolation instead of in-session context accumulation - Disk-based shared state via IMPLEMENTATION_PLAN.md - Example prompt templates (PROMPT_plan.md, PROMPT_build.md, AGENTS.md) - Updated cookbook README descriptions
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
# RALPH-loop: Iterative Self-Referential AI Loops
|
||||
# Ralph Loop: Autonomous AI Task Loops
|
||||
|
||||
Implement self-referential feedback loops where an AI agent iteratively improves work by reading its own previous output.
|
||||
Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window.
|
||||
|
||||
> **Runnable example:** [recipe/ralph_loop.py](recipe/ralph_loop.py)
|
||||
>
|
||||
@@ -8,196 +8,235 @@ Implement self-referential feedback loops where an AI agent iteratively improves
|
||||
> cd recipe && pip install -r requirements.txt
|
||||
> python ralph_loop.py
|
||||
> ```
|
||||
## What is RALPH-loop?
|
||||
|
||||
RALPH-loop is a development methodology for iterative AI-powered task completion. Named after the Ralph Wiggum technique, it embodies the philosophy of persistent iteration:
|
||||
## What is a Ralph Loop?
|
||||
|
||||
- **One prompt, multiple iterations**: The same prompt is processed repeatedly
|
||||
- **Self-referential feedback**: The AI reads its own previous work (file changes, git history)
|
||||
- **Completion detection**: Loop exits when a completion promise is detected in output
|
||||
- **Safety limits**: Always include a maximum iteration count to prevent infinite loops
|
||||
A [Ralph loop](https://ghuntley.com/ralph/) is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: **state lives on disk, not in the model's context**. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits.
|
||||
|
||||
## Example Scenario
|
||||
|
||||
You need to iteratively improve code until all tests pass. Instead of asking Copilot to "write perfect code," you use RALPH-loop to:
|
||||
|
||||
1. Send the initial prompt with clear success criteria
|
||||
2. Copilot writes code and tests
|
||||
3. Copilot runs tests and sees failures
|
||||
4. Loop automatically re-sends the prompt
|
||||
5. Copilot reads test output and previous code, fixes issues
|
||||
6. Repeat until all tests pass and completion promise is output
|
||||
|
||||
## Basic Implementation
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||
|
||||
class RalphLoop:
|
||||
"""Iterative self-referential feedback loop using Copilot."""
|
||||
|
||||
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
|
||||
self.client = CopilotClient()
|
||||
self.iteration = 0
|
||||
self.max_iterations = max_iterations
|
||||
self.completion_promise = completion_promise
|
||||
self.last_response = None
|
||||
|
||||
async def run(self, initial_prompt):
|
||||
"""Run the RALPH-loop until completion promise detected or max iterations reached."""
|
||||
await self.client.start()
|
||||
session = await self.client.create_session(
|
||||
SessionConfig(model="gpt-5.1-codex-mini")
|
||||
)
|
||||
|
||||
try:
|
||||
while self.iteration < self.max_iterations:
|
||||
self.iteration += 1
|
||||
print(f"\n--- Iteration {self.iteration}/{self.max_iterations} ---")
|
||||
|
||||
# Build prompt including previous response as context
|
||||
if self.iteration == 1:
|
||||
prompt = initial_prompt
|
||||
else:
|
||||
prompt = f"{initial_prompt}\n\nPrevious attempt:\n{self.last_response}\n\nContinue improving..."
|
||||
|
||||
result = await session.send_and_wait(
|
||||
MessageOptions(prompt=prompt), timeout=300
|
||||
)
|
||||
|
||||
self.last_response = result.data.content if result else ""
|
||||
print(f"Response ({len(self.last_response)} chars)")
|
||||
|
||||
# Check for completion promise
|
||||
if self.completion_promise in self.last_response:
|
||||
print(f"✓ Completion promise detected: {self.completion_promise}")
|
||||
return self.last_response
|
||||
|
||||
print(f"Continuing to iteration {self.iteration + 1}...")
|
||||
|
||||
raise RuntimeError(
|
||||
f"Max iterations ({self.max_iterations}) reached without completion promise"
|
||||
)
|
||||
finally:
|
||||
await session.destroy()
|
||||
await self.client.stop()
|
||||
|
||||
# Usage
|
||||
async def main():
|
||||
loop = RalphLoop(5, "COMPLETE")
|
||||
result = await loop.run("Your task here")
|
||||
print(result)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
┌─────────────────────────────────────────────────┐
|
||||
│ loop.sh │
|
||||
│ while true: │
|
||||
│ ┌─────────────────────────────────────────┐ │
|
||||
│ │ Fresh session (isolated context) │ │
|
||||
│ │ │ │
|
||||
│ │ 1. Read PROMPT.md + AGENTS.md │ │
|
||||
│ │ 2. Study specs/* and code │ │
|
||||
│ │ 3. Pick next task from plan │ │
|
||||
│ │ 4. Implement + run tests │ │
|
||||
│ │ 5. Update plan, commit, exit │ │
|
||||
│ └─────────────────────────────────────────┘ │
|
||||
│ ↻ next iteration (fresh context) │
|
||||
└─────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## With File Persistence
|
||||
**Core principles:**
|
||||
|
||||
For tasks involving code generation, persist state to files so the AI can see changes:
|
||||
- **Fresh context per iteration**: Each loop creates a new session — no context accumulation, always in the "smart zone"
|
||||
- **Disk as shared state**: `IMPLEMENTATION_PLAN.md` persists between iterations and acts as the coordination mechanism
|
||||
- **Backpressure steers quality**: Tests, builds, and lints reject bad work — the agent must fix issues before committing
|
||||
- **Two modes**: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan)
|
||||
|
||||
## Simple Version
|
||||
|
||||
The minimal Ralph loop — the SDK equivalent of `while :; do cat PROMPT.md | claude ; done`:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from pathlib import Path
|
||||
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||
|
||||
class PersistentRalphLoop:
|
||||
"""RALPH-loop with file-based state persistence."""
|
||||
|
||||
def __init__(self, work_dir, max_iterations=10):
|
||||
self.client = CopilotClient()
|
||||
self.work_dir = Path(work_dir)
|
||||
self.work_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.iteration = 0
|
||||
self.max_iterations = max_iterations
|
||||
|
||||
async def run(self, initial_prompt):
|
||||
"""Run the loop with persistent state."""
|
||||
await self.client.start()
|
||||
session = await self.client.create_session(
|
||||
SessionConfig(model="gpt-5.1-codex-mini")
|
||||
)
|
||||
async def ralph_loop(prompt_file: str, max_iterations: int = 50):
|
||||
client = CopilotClient()
|
||||
await client.start()
|
||||
|
||||
try:
|
||||
# Store initial prompt
|
||||
(self.work_dir / "prompt.md").write_text(initial_prompt)
|
||||
try:
|
||||
prompt = Path(prompt_file).read_text()
|
||||
|
||||
while self.iteration < self.max_iterations:
|
||||
self.iteration += 1
|
||||
print(f"\n--- Iteration {self.iteration} ---")
|
||||
for i in range(1, max_iterations + 1):
|
||||
print(f"\n=== Iteration {i}/{max_iterations} ===")
|
||||
|
||||
# Build context from previous outputs
|
||||
context = initial_prompt
|
||||
prev_output = self.work_dir / f"output-{self.iteration - 1}.txt"
|
||||
if prev_output.exists():
|
||||
context += f"\n\nPrevious iteration:\n{prev_output.read_text()}"
|
||||
|
||||
result = await session.send_and_wait(
|
||||
MessageOptions(prompt=context), timeout=300
|
||||
# Fresh session each iteration — context isolation is the point
|
||||
session = await client.create_session(
|
||||
SessionConfig(model="claude-sonnet-4.5")
|
||||
)
|
||||
try:
|
||||
await session.send_and_wait(
|
||||
MessageOptions(prompt=prompt), timeout=600
|
||||
)
|
||||
response = result.data.content if result else ""
|
||||
finally:
|
||||
await session.destroy()
|
||||
|
||||
# Persist output
|
||||
output_file = self.work_dir / f"output-{self.iteration}.txt"
|
||||
output_file.write_text(response)
|
||||
print(f"Iteration {i} complete.")
|
||||
finally:
|
||||
await client.stop()
|
||||
|
||||
if "COMPLETE" in response:
|
||||
return response
|
||||
|
||||
raise RuntimeError("Max iterations reached")
|
||||
finally:
|
||||
await session.destroy()
|
||||
await self.client.stop()
|
||||
# Usage: point at your PROMPT.md
|
||||
asyncio.run(ralph_loop("PROMPT.md", 20))
|
||||
```
|
||||
|
||||
This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate.
|
||||
|
||||
## Ideal Version
|
||||
|
||||
The full Ralph pattern with planning and building modes, matching the [Ralph Playbook](https://github.com/ClaytonFarr/ralph-playbook) architecture:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||
|
||||
|
||||
async def ralph_loop(mode: str = "build", max_iterations: int = 50):
|
||||
prompt_file = "PROMPT_plan.md" if mode == "plan" else "PROMPT_build.md"
|
||||
client = CopilotClient()
|
||||
await client.start()
|
||||
|
||||
branch = subprocess.check_output(
|
||||
["git", "branch", "--show-current"], text=True
|
||||
).strip()
|
||||
|
||||
print("━" * 40)
|
||||
print(f"Mode: {mode}")
|
||||
print(f"Prompt: {prompt_file}")
|
||||
print(f"Branch: {branch}")
|
||||
print(f"Max: {max_iterations} iterations")
|
||||
print("━" * 40)
|
||||
|
||||
try:
|
||||
prompt = Path(prompt_file).read_text()
|
||||
|
||||
for i in range(1, max_iterations + 1):
|
||||
print(f"\n=== Iteration {i}/{max_iterations} ===")
|
||||
|
||||
# Fresh session — each task gets full context budget
|
||||
session = await client.create_session(
|
||||
SessionConfig(model="claude-sonnet-4.5")
|
||||
)
|
||||
try:
|
||||
await session.send_and_wait(
|
||||
MessageOptions(prompt=prompt), timeout=600
|
||||
)
|
||||
finally:
|
||||
await session.destroy()
|
||||
|
||||
# Push changes after each iteration
|
||||
try:
|
||||
subprocess.run(
|
||||
["git", "push", "origin", branch], check=True
|
||||
)
|
||||
except subprocess.CalledProcessError:
|
||||
subprocess.run(
|
||||
["git", "push", "-u", "origin", branch], check=True
|
||||
)
|
||||
|
||||
print(f"\nIteration {i} complete.")
|
||||
|
||||
print(f"\nReached max iterations: {max_iterations}")
|
||||
finally:
|
||||
await client.stop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = sys.argv[1:]
|
||||
mode = "plan" if "plan" in args else "build"
|
||||
max_iter = next((int(a) for a in args if a.isdigit()), 50)
|
||||
asyncio.run(ralph_loop(mode, max_iter))
|
||||
```
|
||||
|
||||
### Required Project Files
|
||||
|
||||
The ideal version expects this file structure in your project:
|
||||
|
||||
```
|
||||
project-root/
|
||||
├── PROMPT_plan.md # Planning mode instructions
|
||||
├── PROMPT_build.md # Building mode instructions
|
||||
├── AGENTS.md # Operational guide (build/test commands)
|
||||
├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode)
|
||||
├── specs/ # Requirement specs (one per topic)
|
||||
│ ├── auth.md
|
||||
│ └── data-pipeline.md
|
||||
└── src/ # Your source code
|
||||
```
|
||||
|
||||
### Example `PROMPT_plan.md`
|
||||
|
||||
```markdown
|
||||
0a. Study `specs/*` to learn the application specifications.
|
||||
0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far.
|
||||
0c. Study `src/` to understand existing code and shared utilities.
|
||||
|
||||
1. Compare specs against code (gap analysis). Create or update
|
||||
IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks
|
||||
yet to be implemented. Do NOT implement anything.
|
||||
|
||||
IMPORTANT: Do NOT assume functionality is missing — search the
|
||||
codebase first to confirm. Prefer updating existing utilities over
|
||||
creating ad-hoc copies.
|
||||
```
|
||||
|
||||
### Example `PROMPT_build.md`
|
||||
|
||||
```markdown
|
||||
0a. Study `specs/*` to learn the application specifications.
|
||||
0b. Study IMPLEMENTATION_PLAN.md.
|
||||
0c. Study `src/` for reference.
|
||||
|
||||
1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before
|
||||
making changes, search the codebase (don't assume not implemented).
|
||||
2. After implementing, run the tests. If functionality is missing, add it.
|
||||
3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately.
|
||||
4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A`
|
||||
then `git commit` with a descriptive message.
|
||||
|
||||
99999. When authoring documentation, capture the why.
|
||||
999999. Implement completely. No placeholders or stubs.
|
||||
9999999. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it.
|
||||
```
|
||||
|
||||
### Example `AGENTS.md`
|
||||
|
||||
Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context.
|
||||
|
||||
```markdown
|
||||
## Build & Run
|
||||
|
||||
python -m pytest
|
||||
|
||||
## Validation
|
||||
|
||||
- Tests: `pytest`
|
||||
- Typecheck: `mypy src/`
|
||||
- Lint: `ruff check src/`
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Write clear completion criteria**: Include exactly what "done" looks like
|
||||
2. **Use output markers**: Include `<promise>COMPLETE</promise>` or similar in completion condition
|
||||
3. **Always set max iterations**: Prevents infinite loops on impossible tasks
|
||||
4. **Persist state**: Save files so AI can see what changed between iterations
|
||||
5. **Include context**: Feed previous iteration output back as context
|
||||
6. **Monitor progress**: Log each iteration to track what's happening
|
||||
1. **Fresh context per iteration**: Never accumulate context across iterations — that's the whole point
|
||||
2. **Disk is your database**: `IMPLEMENTATION_PLAN.md` is shared state between isolated sessions
|
||||
3. **Backpressure is essential**: Tests, builds, lints in `AGENTS.md` — the agent must pass them before committing
|
||||
4. **Start with PLANNING mode**: Generate the plan first, then switch to BUILDING
|
||||
5. **Observe and tune**: Watch early iterations, add guardrails to prompts when the agent fails in specific ways
|
||||
6. **The plan is disposable**: If the agent goes off track, delete `IMPLEMENTATION_PLAN.md` and re-plan
|
||||
7. **Keep `AGENTS.md` brief**: It's loaded every iteration — operational info only, no progress notes
|
||||
8. **Use a sandbox**: The agent runs autonomously with full tool access — isolate it
|
||||
|
||||
## Example: Iterative Code Generation
|
||||
|
||||
```python
|
||||
prompt = """Write a function that:
|
||||
1. Parses CSV data
|
||||
2. Validates required fields
|
||||
3. Returns parsed records or error
|
||||
4. Has unit tests
|
||||
5. Output <promise>COMPLETE</promise> when done"""
|
||||
|
||||
async def main():
|
||||
loop = RalphLoop(10, "COMPLETE")
|
||||
result = await loop.run(prompt)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
## Handling Failures
|
||||
|
||||
```python
|
||||
try:
|
||||
result = await loop.run(prompt)
|
||||
print("Task completed successfully!")
|
||||
except RuntimeError as e:
|
||||
print(f"Task failed: {e}")
|
||||
if loop.last_response:
|
||||
print(f"\nLast attempt:\n{loop.last_response}")
|
||||
```
|
||||
|
||||
## When to Use RALPH-loop
|
||||
## When to Use a Ralph Loop
|
||||
|
||||
**Good for:**
|
||||
- Code generation with automatic verification (tests, linters)
|
||||
- Tasks with clear success criteria
|
||||
- Iterative refinement where each attempt learns from previous failures
|
||||
- Unattended long-running improvements
|
||||
- Implementing features from specs with test-driven validation
|
||||
- Large refactors broken into many small tasks
|
||||
- Unattended, long-running development with clear requirements
|
||||
- Any work where backpressure (tests/builds) can verify correctness
|
||||
|
||||
**Not good for:**
|
||||
- Tasks requiring human judgment or design input
|
||||
- One-shot operations
|
||||
- Tasks with vague success criteria
|
||||
- Real-time interactive debugging
|
||||
- Tasks requiring human judgment mid-loop
|
||||
- One-shot operations that don't benefit from iteration
|
||||
- Vague requirements without testable acceptance criteria
|
||||
- Exploratory prototyping where direction isn't clear
|
||||
|
||||
@@ -1,127 +1,84 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""
|
||||
Ralph loop: autonomous AI task loop with fresh context per iteration.
|
||||
|
||||
Two modes:
|
||||
- "plan": reads PROMPT_plan.md, generates/updates IMPLEMENTATION_PLAN.md
|
||||
- "build": reads PROMPT_build.md, implements tasks, runs tests, commits
|
||||
|
||||
Each iteration creates a fresh session so the agent always operates in
|
||||
the "smart zone" of its context window. State is shared between
|
||||
iterations via files on disk (IMPLEMENTATION_PLAN.md, AGENTS.md, specs/*).
|
||||
|
||||
Usage:
|
||||
python ralph_loop.py # build mode, 50 iterations
|
||||
python ralph_loop.py plan # planning mode
|
||||
python ralph_loop.py 20 # build mode, 20 iterations
|
||||
python ralph_loop.py plan 5 # planning mode, 5 iterations
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from copilot import CopilotClient, MessageOptions, SessionConfig
|
||||
|
||||
|
||||
class RalphLoop:
|
||||
"""
|
||||
RALPH-loop implementation: Iterative self-referential AI loops.
|
||||
async def ralph_loop(mode: str = "build", max_iterations: int = 50):
|
||||
prompt_file = "PROMPT_plan.md" if mode == "plan" else "PROMPT_build.md"
|
||||
|
||||
The same prompt is sent repeatedly, with AI reading its own previous output.
|
||||
Loop continues until completion promise is detected in the response.
|
||||
"""
|
||||
client = CopilotClient()
|
||||
await client.start()
|
||||
|
||||
def __init__(self, max_iterations=10, completion_promise="COMPLETE"):
|
||||
"""Initialize RALPH-loop with iteration limits and completion detection."""
|
||||
self.client = CopilotClient()
|
||||
self.iteration = 0
|
||||
self.max_iterations = max_iterations
|
||||
self.completion_promise = completion_promise
|
||||
self.last_response = None
|
||||
branch = subprocess.check_output(
|
||||
["git", "branch", "--show-current"], text=True
|
||||
).strip()
|
||||
|
||||
async def run(self, initial_prompt):
|
||||
"""
|
||||
Run the RALPH-loop until completion promise is detected or max iterations reached.
|
||||
"""
|
||||
session = None
|
||||
await self.client.start()
|
||||
try:
|
||||
session = await self.client.create_session(
|
||||
SessionConfig(model="gpt-5.1-codex-mini")
|
||||
)
|
||||
|
||||
try:
|
||||
while self.iteration < self.max_iterations:
|
||||
self.iteration += 1
|
||||
print(f"\n=== Iteration {self.iteration}/{self.max_iterations} ===")
|
||||
|
||||
current_prompt = self._build_iteration_prompt(initial_prompt)
|
||||
print(f"Sending prompt (length: {len(current_prompt)})...")
|
||||
|
||||
result = await session.send_and_wait(
|
||||
MessageOptions(prompt=current_prompt),
|
||||
timeout=300,
|
||||
)
|
||||
|
||||
self.last_response = result.data.content if result else ""
|
||||
|
||||
# Display response summary
|
||||
summary = (
|
||||
self.last_response[:200] + "..."
|
||||
if len(self.last_response) > 200
|
||||
else self.last_response
|
||||
)
|
||||
print(f"Response: {summary}")
|
||||
|
||||
# Check for completion promise
|
||||
if self.completion_promise in self.last_response:
|
||||
print(
|
||||
f"\n✓ Success! Completion promise detected: '{self.completion_promise}'"
|
||||
)
|
||||
return self.last_response
|
||||
|
||||
print(
|
||||
f"Iteration {self.iteration} complete. Checking for next iteration..."
|
||||
)
|
||||
|
||||
raise RuntimeError(
|
||||
f"Maximum iterations ({self.max_iterations}) reached without "
|
||||
f"detecting completion promise: '{self.completion_promise}'"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(f"\nError during RALPH-loop: {e}")
|
||||
raise
|
||||
finally:
|
||||
if session is not None:
|
||||
await session.destroy()
|
||||
finally:
|
||||
await self.client.stop()
|
||||
|
||||
def _build_iteration_prompt(self, initial_prompt):
|
||||
"""Build the prompt for the current iteration, including previous output as context."""
|
||||
if self.iteration == 1:
|
||||
return initial_prompt
|
||||
|
||||
return f"""{initial_prompt}
|
||||
|
||||
=== CONTEXT FROM PREVIOUS ITERATION ===
|
||||
{self.last_response}
|
||||
=== END CONTEXT ===
|
||||
|
||||
Continue working on this task. Review the previous attempt and improve upon it."""
|
||||
|
||||
|
||||
async def main():
|
||||
"""Example usage demonstrating RALPH-loop."""
|
||||
prompt = """You are iteratively building a small library. Follow these phases IN ORDER.
|
||||
Do NOT skip ahead — only do the current phase, then stop and wait for the next iteration.
|
||||
|
||||
Phase 1: Design a DataValidator class that validates records against a schema.
|
||||
- Schema defines field names, types (str, int, float, bool), and whether required.
|
||||
- Return a list of validation errors per record.
|
||||
- Show the class code only. Do NOT output COMPLETE.
|
||||
|
||||
Phase 2: Write at least 4 unit tests covering: missing required field, wrong type,
|
||||
valid record, and empty input. Show test code only. Do NOT output COMPLETE.
|
||||
|
||||
Phase 3: Review the code from phases 1 and 2. Fix any bugs, add docstrings, and add
|
||||
an extra edge-case test. Show the final consolidated code with all fixes.
|
||||
When this phase is fully done, output the exact text: COMPLETE"""
|
||||
|
||||
loop = RalphLoop(max_iterations=5, completion_promise="COMPLETE")
|
||||
print("━" * 40)
|
||||
print(f"Mode: {mode}")
|
||||
print(f"Prompt: {prompt_file}")
|
||||
print(f"Branch: {branch}")
|
||||
print(f"Max: {max_iterations} iterations")
|
||||
print("━" * 40)
|
||||
|
||||
try:
|
||||
result = await loop.run(prompt)
|
||||
print("\n=== FINAL RESULT ===")
|
||||
print(result)
|
||||
except RuntimeError as e:
|
||||
print(f"\nTask did not complete: {e}")
|
||||
if loop.last_response:
|
||||
print(f"\nLast attempt:\n{loop.last_response}")
|
||||
prompt = Path(prompt_file).read_text()
|
||||
|
||||
for i in range(1, max_iterations + 1):
|
||||
print(f"\n=== Iteration {i}/{max_iterations} ===")
|
||||
|
||||
# Fresh session — each task gets full context budget
|
||||
session = await client.create_session(
|
||||
SessionConfig(model="claude-sonnet-4.5")
|
||||
)
|
||||
try:
|
||||
await session.send_and_wait(
|
||||
MessageOptions(prompt=prompt), timeout=600
|
||||
)
|
||||
finally:
|
||||
await session.destroy()
|
||||
|
||||
# Push changes after each iteration
|
||||
try:
|
||||
subprocess.run(
|
||||
["git", "push", "origin", branch], check=True
|
||||
)
|
||||
except subprocess.CalledProcessError:
|
||||
subprocess.run(
|
||||
["git", "push", "-u", "origin", branch], check=True
|
||||
)
|
||||
|
||||
print(f"\nIteration {i} complete.")
|
||||
|
||||
print(f"\nReached max iterations: {max_iterations}")
|
||||
finally:
|
||||
await client.stop()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
args = sys.argv[1:]
|
||||
mode = "plan" if "plan" in args else "build"
|
||||
max_iter = next((int(a) for a in args if a.isdigit()), 50)
|
||||
asyncio.run(ralph_loop(mode, max_iter))
|
||||
|
||||
Reference in New Issue
Block a user